Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 254: 112674, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32105745

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mercury sulfides (HgS) are frequently included in Ayurveda, Tibetan and Chinese medicines to assist the presumed therapeutic effects, but the ethnopharmacology remains elusive. The present study examined the protective effects of α-HgS-containing Hua-Feng-Dan and ß-HgS-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei) against Parkinson's disease mice induced by lipopolysaccharide (LPS) plus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). METHOD: A single injection of LPS (5 mg/kg ip) was given to adult male C57BL/6 mice, and 150 days later, the low dose of MPTP (15 mg/kg, ip, for 4 days) was given to produce the "two-hit" Parkinson's disease model. Together with MPTP treatment, mice were fed with clinically-relevant doses of Hua-Feng-Dan (0.6 g/kg) and 70W (0.2 g/kg) for 35 days. Rotarod test was performed to examine muscle coordination capability. At the end of the experiment, brain was transcardially perfused with paraformaldehyde, the substantia nigra was sectioned for microglia (Iba1 staining) and dopaminergic neuron (THir staining) determination. Colon bacterial DNA was extracted and subjected to qPCR analysis with 16S rRNA probes. RESULTS: The low-grade, chronic neuroinflammation produced by LPS aggravated MPTP neurotoxicity, as evidenced by decreased motor activity, intensified microglia activation and loss of dopaminergic neurons. Both Hua-Feng-Dan and 70W increased rotarod activity and ameliorated the pathological lesions in the brain. In gut microbiomes examined, LPS plus MPTP increased Verrucomicrobiaceae, Methanobacteriaceae, Pronicromonosporaceae, and Clostridaceae species were attenuated by Hua-Feng-Dan and 70W. CONCLUSIONS: α-HgS-containing Hua-Feng-Dan and ß-HgS-containing 70W at clinical doses protected against chronic LPS plus MPTP-induced toxicity to the brain and gut, suggesting HgS-containing traditional medicines could target gut microbiota as a mechanism of their therapeutic effects.


Assuntos
Colo/microbiologia , Compostos de Mercúrio/farmacologia , Doença de Parkinson Secundária/prevenção & controle , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colo/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Lipopolissacarídeos , Masculino , Camundongos , Microglia/patologia , Doença de Parkinson Secundária/induzido quimicamente , Teste de Desempenho do Rota-Rod , Substância Negra/patologia
2.
J Ethnopharmacol ; 247: 112299, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606537

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hua-Feng-Dan (HFD) is a traditional Chinese medicine used for neurological disorders. HFD contains cinnabar (HgS) and realgar (As4S4). The ethnopharmacological basis of cinnabar and realgar in HFD is not known. AIM OF THE STUDY: To address the role of cinnabar and realgar in HFD-produced neuroprotection against neurodegenerative diseases and disturbance of gut microbiota. MATERIALS AND METHODS: Lipopolysaccharide (LPS) plus rotenone (ROT)-elicited rat dopaminergic (DA) neuronal damage loss was performed as a Parkinson's disease animal model. Rats were given a single injection of LPS. Four months later, rats were challenged with the threshold dose of ROT. The clinical dose of HFD was administered via feed, starting from ROT administration for 46 days. Behavioral dysfunction was detected by rotarod and Y-maze tests. DA neuron loss and microglial activation were assessed via immunohistochemical staining and western bolt analysis. The colon content was collected to extract bacterial DNA followed by real-time PCR analysis with 16S rRNA primers. RESULTS: LPS plus ROT induced neurotoxicity, as evidenced by DA neuron loss in substantia nigra, impaired behavioral functions and increased microglial activation. HFD-original (containing 10% cinnabar and 10% realgar) rescued loss of DA neurons, improved behavioral dysfunction and attenuated microglial activation. Compared with HFD-original, HFD-reduced (3% cinnabar and 3% realgar) was also effective, but to be a less extent, while HFD-removed (without cinnabar and realgar) was ineffective. In analysis of gut microbiome, the increased Verrucomicrobiaceae and Lactobacteriaceae, and the decreased Enterobacteeriaceae by LPS plus ROT were ameliorated by HFD-original, and to be the less extent by HFD-reduced. CONCLUSION: Cinnabar and realgar are active ingredients in HFD to exert beneficial effects in a neurodegenerative model and gut microbiota.


Assuntos
Arsenicais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos de Mercúrio/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Sulfetos/farmacologia , Animais , Arsenicais/química , Arsenicais/uso terapêutico , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Etnofarmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Lipopolissacarídeos/toxicidade , Masculino , Compostos de Mercúrio/química , Compostos de Mercúrio/uso terapêutico , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Degeneração Neural , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/patologia , RNA Ribossômico 16S/genética , Ratos , Rotenona/toxicidade , Sulfetos/química , Sulfetos/uso terapêutico , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA