Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 100(10): 4685-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26810199

RESUMO

The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of ß-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities.


Assuntos
Archaea/crescimento & desenvolvimento , Biomassa , Sedimentos Geológicos/microbiologia , Archaea/classificação , China , DNA Arqueal/isolamento & purificação , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Methanobacteriaceae/classificação , Methanobacteriaceae/crescimento & desenvolvimento , Methanobrevibacter/classificação , Methanobrevibacter/crescimento & desenvolvimento , Methanosarcinales/classificação , Methanosarcinales/crescimento & desenvolvimento , Methanospirillum/classificação , Methanospirillum/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Filogenia , RNA Ribossômico 16S/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA , Microbiologia da Água
2.
Microb Ecol ; 70(2): 433-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783218

RESUMO

Anaerobic alkane degradation via methanogenesis has been intensively studied under mesophilic and thermophilic conditions. While there is a paucity of information on the ability and composition of anaerobic alkane-degrading microbial communities under low temperature conditions. In this study, we investigated the ability of consortium Y15, enriched from Shengli oilfield, to degrade hydrocarbons under different temperature conditions (5-35 °C). The consortium could use hexadecane over a low temperature range (15-30 °C). No growth was detected below 10 °C and above 35 °C, indicating the presence of cold-tolerant species capable of alkane degradation. The preferential degradation of short chain n-alkanes from crude oil was observed by this consortium. The structure and dynamics of the microbial communities were examined using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and Sanger sequencing of 16S rRNA genes. The core archaeal communities were mainly composed of aceticlastic Methanosaeta spp. Syntrophaceae-related microorganisms were always detected during consecutive transfers and dominated the bacterial communities, sharing 94-96 % sequence similarity with Smithella propionica strain LYP(T). Phylogenetic analysis of Syntrophaceae-related clones in diverse methanogenic alkane-degrading cultures revealed that most of them were clustered into three sublineages. Syntrophaceae clones retrieved from this study were mainly clustered into sublineage I, which may represent psychrotolerant, syntrophic alkane degraders. These results indicate the wide geographic distribution and ecological function of syntrophic alkane degraders.


Assuntos
Archaea/genética , Petróleo/metabolismo , Archaea/classificação , Archaea/metabolismo , Biodegradação Ambiental , Metano/metabolismo , Consórcios Microbianos/fisiologia , Filogenia , Polimorfismo de Fragmento de Restrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA