Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 112: 110941, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409087

RESUMO

Pectin nanofiber mats are promising tissue engineering scaffolds but suffer from poor cell infiltration. In this study, gelatin, a collagen derived cell adhesive protein, was used to crosslink the electrospun nanofibers of periodate oxidized pectin. Cell culture experiment results demonstrated that cells were able to grow into the gelatin-crosslinked pectin nanofiber mats rather than only spread on mat surface. The nanofiber mats showed moderate mechanical strength, with a maximum tensile strength of up to 2.3 MPa, an ultimate tensile strain of up to 15%, and were capable of degrading gradually over 4 weeks or even longer periods in simulated body fluids. Thus, gelatin-crosslinked pectin nanofiber mats hold a great potential for soft tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Nanofibras/química , Pectinas/química , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Camundongos , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual
2.
Ecotoxicol Environ Saf ; 167: 376-384, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366271

RESUMO

Heavy metal (HM) pollution in agricultural soils due to the recycling of waste electrical and electronic equipment (WEEE) has become a serious concern, but most farmers cannot afford the economic losses of fallow land during remediation. Thus, it is imperative to produce low-HM crops while remediating the contaminated soils. A 17-week pot experiment was conducted to investigate the growth and HM (Cd, Cu, Pb, Cr, Zn, and Ni) acquisition of garlic chives (Allium tuberosum Rottl. ex Spreng.) intercropped with sunflower (Helianthus annuus L.) and inoculated with (I+M) or without (I-M) the arbuscular mycorrhizal (AM) fungus Funneliformis caledonium on a severely HM-contaminated soil that was collected from a WEEE-recycling site. Compared with the monoculture control, the I-M treatment significantly (P < 0.05) decreased Cd, Cu, Cr, Zn, and Ni concentrations in the shoots of chives through rhizosphere competition and HM (except Cr) transfer from the root to the shoot of chives, and increased the average shoot fresh weight (i.e., yield) of chives by 794% by alleviating HM toxicity. Compared with the I-M treatment, the I+M treatment significantly increased soil phosphatase activity as well as root mycorrhizal colonization of both sunflower and chives. The I+M treatment had no effect on the tissue P concentration of sunflower but elevated the average dry biomass (shoot plus root) and P acquisition level of sunflower by 179% and 121%, respectively. In addition, the I+M treatment significantly increased the P concentration in the root rather than in the shoot of chives and significantly increased the level of P acquisition by chives, increasing the average yield of chives by 229%. Simultaneously, the I+M treatment significantly increased the level of HM (except Cd) acquisition by sunflower, enhancing the rhizosphere competition by sunflower over chives, and further reducing the transfer of all six HMs from root to shoot in the chives, and inducing significant decreases in chive shoot HM concentrations compared with the monoculture control. Furthermore, the I+M treatment decreased the average total concentrations and increased the average DTPA-extractable concentrations of soil HMs. The results demonstrate the multifunctional role of AM fungi in the intercropping system for both vegetable production and phytoremediation on HM-contaminated soils.


Assuntos
Agricultura/métodos , Cebolinha-Francesa , Helianthus , Metais Pesados/metabolismo , Micorrizas , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Resíduo Eletrônico , Metais Pesados/análise , Fósforo/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Reciclagem , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos
3.
Biomacromolecules ; 19(2): 490-498, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29257671

RESUMO

Polysaccharides display poor cell adhesion due to the lack of cell binding domains. This severely limits their applications in regenerative medicine. This study reports novel cross-linked pectin nanofibers with dramatically enhanced cell adhesion. The nanofibers are prepared by at first oxidizing pectin with periodate to generate aldehyde groups and then cross-linking the nanofibers with adipic acid dihydrazide to covalently connect pectin macromolecular chains with adipic acid dihydrazone linkers. The linkers may act as cell binding domains. Compared with traditional Ca2+-cross-linked pectin nanofibers, the pectin nanofibers with high oxidation/cross-linking degree exhibit much enhanced cell adhesion capability. Moreover, the cross-linked pectin nanofibers exhibit excellent mechanical strength (with Young's modulus ∼10 MPa) and much enhanced body degradability (degrade completely in 3 weeks or longer time). The combination of excellent cell adhesion capability, mechanical strength, and body degradability suggests that the cross-linked pectin nanofibers are promising candidates for in vivo applications such as tissue engineering and wound healing. This cross-linking strategy may also be used to improve the cell adhesion capability of other polysaccharide materials.


Assuntos
Adipatos/química , Reagentes de Ligações Cruzadas/química , Nanofibras/química , Pectinas , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Pectinas/química , Pectinas/farmacologia
4.
Carbohydr Polym ; 174: 591-600, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821109

RESUMO

Polysaccharides including pectin, alginate and chitosan are fabricated into dressings of micrometer-scaled architecture (micro- fiber or particle) and widely applied in wound treatments clinically. This work characterized and compared the properties of electrospun nanofibrous dressings of these polysaccharides. We found that although the three polysaccharide nanofiber mats had comparable mechanical strength and vapour permeability, the pectinate nanofiber mat could absorb 1.2 times and 3.6 times more exudates than the alginate and chitosan nanofiber mats, respectively, within less time. Moreover, the pectinate nanofiber mat showed much higher antibacterial activity (73.1%) than the alginate and chitosan nanofiber mats (11.8% and 17.1%, respectively). Further examinations demonstrated that the superior absorbency and antibacterial activity of the pectinate nanofiber mat were associated with the moderate extent of swelling of pectinate nanofibers under hydrated conditions. All these results suggest that the pectinate nanofiber mat might be a superior wound dressing to the alginate and chitosan nanofiber mats.


Assuntos
Antibacterianos/química , Bandagens , Nanofibras , Pectinas/química , Alginatos , Quitosana , Ácido Glucurônico , Ácidos Hexurônicos
5.
Mater Sci Eng C Mater Biol Appl ; 59: 885-893, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652444

RESUMO

Nanofibers of natural polymers represent an essential class of materials in biomedicine. Pectin is a plant-sourced anionic polysaccharide widely used in food products and biomedicine owning to its abundance, biocompatibility and inherent bioactivity. However, current electrospun pectin nanofibers are suffered from high content of carrier polymer, which may lead to low integrity and mechanical strength as well as in vivo toxicity. We report here a strategy to reduce the content of carrier polymer, polyethylene oxide (PEO) in our study, in pectin nanofibers, via electrospinning at low loading followed with selective washing. With improved electrospinning condition, we first enabled electrospinning of pectin nanofibers at low PEO loading. Then the PEO was removed by washing with a selective solvent to give pectin nanofibers containing only 1.5% PEO. The strategy was versatile to pectins from various sources and of various degree of esterification. The pectin nanofibers exhibited Young's modulus as high as 358.5MPa. In view of their rich bioactivity, the pectin nanofibers of low content of carrier polymer are promising materials for a wide range of biomedical applications.


Assuntos
Técnicas Eletroquímicas/métodos , Nanofibras/química , Pectinas/química , Polietilenoglicóis/química
6.
J Microbiol ; 53(7): 454-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26115994

RESUMO

Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at the wheat maturation stage. Our results also demonstrated that NT resulted in the positive protection of the community structure of AM fungi and played an important role in maintaining their functionality especially for maize seedlings.


Assuntos
Fosfatase Alcalina/metabolismo , Produtos Agrícolas/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Triticum/microbiologia , Zea mays/microbiologia , Agricultura/métodos , Biodiversidade , China , Produtos Agrícolas/crescimento & desenvolvimento , Micorrizas/enzimologia , Micorrizas/crescimento & desenvolvimento , Fósforo/metabolismo , Solo/química , Esporos Fúngicos/isolamento & purificação , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
7.
Environ Sci Pollut Res Int ; 20(12): 8457-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23797707

RESUMO

A post-harvest experiment was conducted further to our previous greenhouse pot study on upland kangkong (Ipomoea aquatica Forsk.) and Alfred stonecrop (Sedum alfredii Hance) intercropping system in Cd-contaminated soil inoculated with arbuscular mycorrhizal (AM) fungi. Previously, four treatments were established in the intercropping experiment, including monoculture of kangkong (control), intercropping with stonecrop (IS), and IS plus inoculation with Glomus caledonium (IS+Gc) or Glomus versiforme (IS+Gv). Both kangkong and stonecrop plants were harvested after growing for 8 weeks. Then, the tested soils were reclaimed for growing post-harvest kangkong for 6 weeks. In the post-harvest experiment, there were no significant differences between the IS and control treatments, except for a significantly decreased (p<0.05) soil available P concentration with IS treatment. Compared with IS, both IS+Gc and IS+Gv significantly decreased (p<0.05) soil DTPA-extractable (phytoavailable) Cd concentrations, but not total Cd, by elevating soil pH, causing significantly lower (p<0.05) Cd concentrations in both the root and shoot of kangkong. In addition, both Gc and Gv significantly increased (p<0.05) soil acid phosphatase activities and available P concentrations and hence resulted in significantly higher (p<0.05) plant P acquisitions. However, only Gv significantly increased (p<0.05) kangkong yield, while Gc only significantly elevated (p<0.05) the shoot P concentration. It suggested that AM fungi have played key roles in Cd stabilization and P mobilization in the intercropping system, and such positive responses seemed to be sustainable and valuable in post-harvest soils.


Assuntos
Cádmio/análise , Ipomoea/fisiologia , Micorrizas/fisiologia , Fósforo/análise , Sedum/fisiologia , Poluentes do Solo/análise , Agricultura/métodos , Cádmio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sedum/metabolismo , Solo/química , Poluentes do Solo/metabolismo
8.
Appl Microbiol Biotechnol ; 88(3): 781-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683717

RESUMO

The P efficiency, crop yield, and response of wheat to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (19 years) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIR) of wheat plants at acquiring P were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Without AMF inoculation, higher crop yields but lower colonization rates were observed in the NPK and two OA-inputted treatments, and NPK had significantly (P < 0.05) lower impacts on organic C and available P in soils and thereby P acquisition of wheat plants compared with OA and 1/2 OM. G. caledonium inoculation significantly (P < 0.05) increased colonization rates with the NPK and two P-deficient treatments but significantly (P < 0.05) increased vegetative biomass, crop yield, and P acquisition of wheat as well as soil alkaline phosphatase (ALP) activity, only with the NPK treatment. This gave an MIR of ca. 45% on total P acquisition of wheat plants. There were no other remarkable MIRs. It suggested that the MIR is determined by soil available P status, and rational combination of AMF with chemical NPK fertilizer can compensate for organic amendments by improving P-acquisition efficiency in arable soils.


Assuntos
Micorrizas/fisiologia , Fósforo/metabolismo , Microbiologia do Solo , Solo/química , Triticum/microbiologia , Fosfatase Alcalina/metabolismo , Biomassa , Fertilizantes , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA