Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 168: 115154, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630020

RESUMO

Pyrrhotite is often considered as a gangue mineral, and discarded in mine wastes and tailings. Glyphosate and fertilizer, often excessively used in agriculture, flow into water bodies with agriculture runoff, and cause pollution of water bodies. In this study, the pyrrhotite was used as a substrate in a pilot constructed wetland (CW) to remove the glyphosate and nutrients from simulated agriculture runoff. In nearly one year, the pilot pyrrhotite constructed wetland (Pyrr-CW) removed 90.3 ±â€¯6.1% of glyphosate, 88.2 ±â€¯5.1 of total phosphorus (TP) and 60.40 ±â€¯5.60% of total nitrogen (TN) on average, much higher than the control CW. The abundances of sulfur-oxidizing bacteria, such as Sulfurifustis, Sulfuriferula and Thiobacillus, were much higher in the Pyrr-CW than those in the control CW. In the Pyrr-CW goethite was produced by pyrrhotite aerobic oxidation (PAO) and pyrrhotite autotrophic denitrification (PAD) continuously and spontaneously. Higher glyphosate and TP removals were resulted from adsorption on the goethite produced, and higher TN removal was attributed to the PAD. High glyphosate and nutrients removal could keep a long term until the pyrrhotite in the Pyrr-CW was used up. The phosphorus (P) sequestered in the Pyrr-CW existed mainly in organic P, (Fe + Al)P and (Ca + Mg)P, and their order was (Fe + Al)P > organic P > (Ca + Mg)P. No heavy metal ions released from the Pyrr-CW. With higher and lasting removal rate, and lower cost, the Pyrr-CW is a promising technology for simultaneous glyphosate and nutrients removal from agricultural runoff and wastewater.


Assuntos
Nutrientes , Áreas Alagadas , Agricultura , Glicina/análogos & derivados , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Glifosato
2.
Water Res ; 148: 153-161, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359945

RESUMO

The searches for suitable substrates with high capacity for phosphorus (P) removal and promoting denitrification for enhancing nitrogen (N) removal have been a key work in constructed wetlands (CWs) research in the past several decades. But few substrates enhancing simultaneous long-term N and P removal in CWs have been found before. In this study, two subsurface flow pilot-scale wetlands using natural pyrite and limestone as substrates were constructed. After 3 year of operation, we found that pyrite had no negative effects on growth of reeds, removals of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), but enhanced long-term total nitrogen (TN) and total phosphorus (TP) removals in constructed wetland. In the three years, the average TP and TN removals of pyrite constructed wetland (PCW) were 87.7 ± 14.2% with 0.25 ± 0.20 mg/L of average effluent TP and 69.4 ± 21.4% with 4.0 ± 3.2 mg/L of average effluent TN, respectively. The main P form in the PCW was (Fe + Al)-bound P. The mechanisms of the PCW with enhanced simultaneous long-term N and P removals were anaerobic and aerobic oxidations of pyrite. The main bacteria were Anaeromyxobacter (4.9%), Ramlibacter (4.8%), Defluviicoccus (4.2%), Azoarcus (3.7%), Geobacter (3.4%), and they were highly related to anaerobic and aerobic oxidation of pyrite in the PCW.


Assuntos
Fósforo , Áreas Alagadas , Ferro , Nitrogênio , Projetos Piloto , Sulfetos , Eliminação de Resíduos Líquidos
3.
Huan Jing Ke Xue ; 34(9): 3445-50, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24288988

RESUMO

Polluted river water was treated with limestone and pyrite-limestone subsurface horizontal constructed wetlands. The aims were to know the performance of two wetlands on removal of common pollutants, especially nitrogen and phosphorus, and analyze the actions of these minerals. The relationship between hydraulic retention time and purification performance of two constructed wetlands was studied. The optimal hydraulic retention time for pollutant removal was about 3 d, The average removal efficiency of COD, TN and TP were 51%, 70% and 95%, respectively. With same influent and hydraulic loading, the average removal efficiency of COD, NH4+ -N, TN and TP were 53.93%, 82.13%, 66%, 50.9%, and 51.66%, 77.43%, 72.06%, 97.35% for limestone and pyrite-limestone constructed wetlands, respectively. There were few differences between limestone and pyrite-limestone wetlands on COD removal, but the nitrogen and phosphorus removal of pyrite-limestone constructed wetland was higher than that of limestone constructed wetland. The phosphorus removal of pyrite-limestone wetland was more efficiency and stable, not affected by temperature.


Assuntos
Carbonato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Sulfetos/química , Poluição da Água , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Rios/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA