Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteomics ; 299: 105157, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462170

RESUMO

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteômica , Precursor de Proteína beta-Amiloide , Glicosídeos , Biomarcadores , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
2.
Neuropeptides ; 90: 102197, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509715

RESUMO

Alzheimer's disease (AD) is a serious, progressive neurodegenerative disease that involves irreversible neuronal death. Tetrahydroxy stilbene glycoside (TSG) is an active compound extracted from P. multiflorum, a traditional Chinese herbal medicine, but its role in neuroprotection is unclear. Herein, we aimed to validate the effects of TSG on APP/PS1 model mice and the underlying mechanism. RNA-seq was performed to identify differentially expressed genes in APP/PS1 mouse, with PCR and immunohistochemistry used for validation. Experiments were performed after bioinformatic analysis for verification. Neuronal damage was observed by H&E staining. Key proteins involved in the pathway such as CX3CR1, Iba1 and TGF-ß were examined by immunohistochemical analysis. The KEGG analysis suggested that these genes might act by multiple pathways to build the pharmacological network of TSG in AD progression. These data provide the credible evidence that TSG improved neuronal damage and regulated neuroprotective mechanisms. Together, our work has detailed the whole and major genes in APP/PS1 model mouse regulated by TSG, and highlighted the anti-inflammatory function of TSG in mediating CX3CR1 and TGF-ß as the TGF-ß/fractalkine/CX3XR1 signaling pathway, especially in microglia. Moreover, TSG has potential value in synaptic transmission and neurotrophic action on neurodegenerative diseases. In summary, TSG is a promising candidate for preventing and treating the progression of AD.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Anti-Inflamatórios não Esteroides/farmacologia , Receptor 1 de Quimiocina CX3C/genética , Quimiocina CX3CL1/genética , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/genética , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Fator de Crescimento Transformador beta/genética , Doença de Alzheimer/tratamento farmacológico , Animais , Biologia Computacional , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , RNA-Seq , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA