Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 35(51): e2304514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37784226

RESUMO

Bacterial pneumonia is the leading cause of death worldwide among all infectious diseases. However, currently available vaccines against fatal bacterial lung infections, e.g., pneumonic plague, are accompanied by limitations, including insufficient antigen-adjuvant co-delivery and inadequate immune stimulation. Therefore, there is an urgent requirement to develop next-generation vaccines to improve the interaction between antigen and adjuvant, as well as enhance the effects of immune stimulation. This study develops a novel amino-decorated mesoporous manganese silicate nanoparticle (AMMSN) loaded with rF1-V10 (rF1-V10@AMMSN) to prevent pneumonic plague. These results suggest that subcutaneous immunization with rF1-V10@AMMSN in a prime-boost strategy induces robust production of rF1-V10-specific IgG antibodies with a geometric mean titer of 315,844 at day 42 post-primary immunization, which confers complete protection to mice against 50 × LD50 of Yersinia pestis (Y. pestis) challenge via the aerosolized intratracheal route. Mechanistically, rF1-V10@AMMSN can be taken up by dendritic cells (DCs) and promote DCs maturation through activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and production of type I interferon. This process results in enhanced antigen presentation and promotes rF1-V10-mediated protection against Y. pestis infection. This manganese-based nanoparticle vaccine represents a valuable strategy for combating fatal bacterial pneumonia.


Assuntos
Vacina contra a Peste , Peste , Pneumonia Bacteriana , Vacinas , Camundongos , Animais , Peste/prevenção & controle , Nanovacinas , Manganês , Antígenos de Bactérias/genética , Pneumonia Bacteriana/prevenção & controle , Adjuvantes Imunológicos , Proteínas de Bactérias
2.
J Appl Toxicol ; 41(9): 1479-1490, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33529366

RESUMO

Botulinum neurotoxin type A (BoNT/A) is traditional medicine and well known for its therapeutic use as an anesthetic and in cosmetic applications that work through the inhibition of acetylcholine exocytosis in neuronal cells. BoNT/A also has the potential to function as a biological weapon due to its high mortality rate and ease of dispersal. Emerging evidence suggests that BoNT/A exhibits biological effects on nonneuronal cells. In cytology experiments, BoNT/A induces global gene expression alterations. However, pulmonary effects from exposure to aerosolized BoNT/A have not been evaluated. This study investigated the global transcriptional profile of lung tissues after botulism inhalation. A mice model of inhaled botulism was established using intratracheal exposure to aerosolized BoNT/A and described through histological examination and flow cytometry. Transcriptomic analysis revealed that genes related to acute inflammatory responses were upregulated at 12-h postexposure. Increased expression of multiple anti-inflammatory marker genes and decreased expression of pro-inflammatory marker genes were observed at 48- to 72-h postexposure, underscoring a transcriptional shift toward a pro-reparative phenotype. Histological examination and cell proportions analysis mirrored these expression patterns. Accordingly, the orchestration of a quick phenotype transition prompted by BoNT/A may have the potential for promoting the resolution of the inflammatory lung. To our knowledge, this study represents the first research to investigate the pulmonary transcriptional responses of aerosolized BoNT/A exposure; the results may provide new insights in elucidating the molecular mechanism for pulmonary inhaled botulism and highlight the potential therapeutic application of BoNT/A in mitigating inflammatory conditions.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Perfilação da Expressão Gênica/métodos , Pulmão/efeitos dos fármacos , Administração por Inalação , Aerossóis , Animais , Feminino , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/induzido quimicamente , Pneumonia/patologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA