Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Brain Res ; 463: 114885, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38296202

RESUMO

The main cause of second-generation antipsychotic (SGA)-induced obesity is considered due to the antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling. It is reported that 5-HT2cR interacted with GHSR1a, however it is unknown whether one of the SGA olanzapine alters the 5-HT2cR/GHSR1a interaction, affecting orexigenic neuropeptide signalling in the hypothalamus. We found that olanzapine treatment increased average energy intake and body weight gain in mice; olanzapine treatment also increased orexigenic neuropeptide (NPY) and GHSR1a signaling molecules, pAMPK, UCP2, FOXO1 and pCREB levels in the hypothalamus. By using confocal fluorescence resonance energy transfer (FRET) technology, we found that 5-HT2cR interacted/dimerised with the GHSR1a in the hypothalamic neurons. As 5-HT2cR antagonist, both olanzapine and S242084 decreased the interaction between 5-HT2cR and GHSR1a and activated GHSR1a signaling. The 5-HT2cR agonist lorcaserin counteracted olanzapine-induced attenuation of interaction between 5-HT2cR and GHSR1a and inhibited activation of GHSR1a signalling and NPY production. These findings suggest that 5-HT2cR antagonistic effect of olanzapine in inhibition of the interaction of 5-HT2cR and GHSR1a, activation GHSR1a downstream signaling and increasing hypothalamic NPY, which may be the important neuronal molecular mechanism underlying olanzapine-induced obesity and target for prevention metabolic side effects of antipsychotic management in psychiatric disorders.


Assuntos
Antipsicóticos , Neuropeptídeos , Animais , Camundongos , Antipsicóticos/efeitos adversos , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Olanzapina/efeitos adversos
2.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446554

RESUMO

Heteroatom doping is considered an effective method to substantially improve the electrochemical performance of Ti3C2Tx MXene for supercapacitors. Herein, a facile and controllable strategy, which combines heat treatment with phosphorous (P) doping by using sodium phosphinate (NaH2PO2) as a phosphorus source, is used to modify Ti3C2Tx. The intercalated ions from NaH2PO2 act as "pillars" to expand the interlayer space of MXene, which is conducive to electrolyte ion diffusion. On the other hand, P doping tailors the surface electronic state of MXene, optimizing electronic conductivity and reducing the free energy of H+ diffusion on the MXene surface. Meanwhile, P sites with lower electronegativity owning good electron donor characteristics are easy to share electrons with H+, which is beneficial to charge storage. Moreover, the adopted heat treatment replaces -F terminations with O-containing groups, which enhances the hydrophilicity and provides sufficient active sites. The change in surface functional groups increases the content of high valence-stated Ti with a high electrochemical activity that can accommodate more electrons during discharge. Synergistic modification of interlayer structure and chemical state improves the possibility of Ti3C2Tx for accommodating more H+ ions. Consequently, the modified electrode delivers a specific capacitance of 510 F g-1 at 2 mV s-1, and a capacitance retention of 90.2% at 20 A g-1 after 10,000 cycles. The work provides a coordinated strategy for the rational design of high-capacitance Ti3C2Tx MXene electrodes.


Assuntos
Líquidos Corporais , Titânio , Difusão , Fósforo
3.
Zhongguo Zhong Yao Za Zhi ; 48(2): 492-506, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725239

RESUMO

This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.


Assuntos
Medicamentos de Ervas Chinesas , Glomerulonefrite , Animais , Ratos , Ácido Araquidônico , Biomarcadores/sangue , Proteínas Sanguíneas , Cromatografia Líquida de Alta Pressão , Creatinina , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite/sangue , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Metabolômica , Ureia , Doença Crônica , Modelos Animais de Doenças , Misturas Complexas/farmacologia , Misturas Complexas/uso terapêutico
4.
J Ethnopharmacol ; 298: 115570, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868549

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese herbal medicine, which has been widely used in traditional Chinese medicine (TCM) for treating intestinal diseases. It is also traditionally used as health product and medicine in Russia and other countries. However, the effect of SC ethanol extract on anti-ulcerative colitis (UC) has not been systematically studied yet. AIM OF THE STUDY: We investigated the protective effects and underlying action mechanisms of SC extract (SCE) for UC treatment. MATERIALS AND METHODS: An animal model of UC induced by dextran sulfate sodium (DSS) was established. After oral administration of SCE, the Disease Activity Index (DAI) was calculated, the length of colon measured, levels of proinflammatory factors determined, and histopathology carried out to assess the therapeutic efficacy of SCE on UC. The effects of SCE on the toll-like receptor 4/nuclear factor-kappa B/nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 inflammasome (TLR4/NF-κB/NLRP3 inflammasome) signaling pathway were evaluated by western blotting. High-throughput sequencing was done to reveal the effect of SCE on the change of the gut microbiota (GM) in mice with DSS-induced colitis. RESULTS: SCE significantly reduced the DAI score, restored colon-length shortening, and ameliorated colonic histopathologic injury in mice with DSS-induced colitis. SCE inhibited the inflammatory response by regulating the TLR4/NF-κB/NLRP3 inflammasome pathway in mice with UC. SCE also maintained gut barrier function by increasing the levels of zonula occludens (ZO)-1 and occludin. 16S rRNA sequencing showed that SCE could reverse the GM imbalance caused by UC. CONCLUSIONS: SCE can ameliorate DSS-induced colitis, and that its effects might be associated with suppression of the TLR4/NF-κB/NLRP3 inflammasome pathway and GM regulation, which may provide significant supports for the development of potential candidates for UC treatment.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Schisandra , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Inflamassomos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 47(1): 188-202, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178926

RESUMO

This study aims to study the effective substance and mechanism of Ziziphi Spinosae Semen extract in the treatment of insomnia based on serum metabolomics and network pharmacology. The rat insomnia model induced by p-chlorophenylalanine(PCPA) was established. After oral administration of Ziziphi Spinosae Semen extract, the general morphological observation, pentobarbital sodium-induced sleep test, and histopathological evaluation were carried out. The potential biomarkers of the extract in the treatment of insomnia were screened by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS) combined with multivariate analysis, and the related metabolic pathways were further analyzed. The "component-target-pathway" network was constructed by ultra-high performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry(UHPLC-Q-Exactive-MS/MS) combined with network pharmacology to explore the effective substances and mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. The results of pentobarbital sodium-induced sleep test and histopathological evaluation(hematoxylin and eosin staining) showed that Ziziphi Spinosae Semen extract had good theraputic effect on insomnia. A total of 21 endogenous biomarkers of Ziziphi Spinosae Semen extract in the treatment of insomnia were screened out by serum metabolomics, and the metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and nicotinate and nicotinamide metabolism were obtained. A total of 34 chemical constituents were identified by UHPLC-Q-Exactive-MS/MS, including 24 flavonoids, 2 triterpenoid saponins, 4 alkaloids, 2 triterpenoid acids, and 2 fatty acids. The network pharmacological analysis showed that Ziziphi Spinosae Semen mainly acted on target proteins such as dopamine D2 receptor(DRD2), 5-hydroxytryptamine receptor 1 A(HTR1 A), and alpha-2 A adrenergic receptor(ADRA2 A) in the treatment of insomnia. It was closely related to neuroactive ligand-receptor interaction, serotonergic synapse, and calcium signaling pathway. Magnoflorine, N-nornuciferine, caaverine, oleic acid, palmitic acid, coclaurine, betulinic acid, and ceanothic acid in Ziziphi Spinosae Semen may be potential effective compounds in the treatment of insomnia. This study revealed that Ziziphi Spinosae Semen extract treated insomnia through multiple metabolic pathways and the overall correction of metabolic disorder profile in a multi-component, multi-target, and multi-channel manner. Briefly, this study lays a foundation for further research on the mechanism of Ziziphi Spinosae Semen in treating insomnia and provides support for the development of innovative Chinese drugs for the treatment of insomnia.


Assuntos
Medicamentos de Ervas Chinesas , Distúrbios do Início e da Manutenção do Sono , Ziziphus/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Metabolômica , Farmacologia em Rede , Ratos , Sementes/química , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Espectrometria de Massas em Tandem
6.
Sci Rep ; 10(1): 19185, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154380

RESUMO

Olanzapine is a second-generation antipsychotic (AP) drug commonly prescribed for the treatment of schizophrenia. Recently, olanzapine has been found to cause brain tissue volume loss in rodent and primate studies; however, the underlying mechanism remains unknown. Abnormal autophagy and oxidative stress have been implicated to have a role in AP-induced neurodegeneration, while N-acetylcysteine (NAC) is a potent antioxidant, shown to be beneficial in the treatment of schizophrenia. Here, we investigate the role of olanzapine and NAC on cell viability, oxidative stress, mitochondrial mass and mitophagy in hypothalamic cells. Firstly, cell viability was assessed in mHypoA-59 and mHypoA NPY/GFP cells using an MTS assay and flow cytometric analyses. Olanzapine treated mHypoA-59 cells were then assessed for mitophagy markers and oxidative stress; including quantification of lysosomes, autophagosomes, LC3B-II, p62, superoxide anion (O2-) and mitochondrial mass. NAC (10 mM) was used to reverse the effects of olanzapine (100 µM) on O2-, mitochondrial mass and LC3B-II. We found that olanzapine significantly impacted cell viability in mHypoA-59 hypothalamic cells in a dose and time-dependent manner. Olanzapine inhibited mitophagy, instigated oxidative stress and prompted mitochondrial abnormalities. NAC was able to mitigate olanzapine-induced effects. These findings suggest that high doses of olanzapine may cause neurotoxicity of hypothalamic neurons via increased production of reactive oxygen species (ROS), mitochondrial damage and mitophagy inhibition. This could in part explain data suggesting that APs may reduce brain volume.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Antipsicóticos/farmacologia , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Olanzapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Zhong Yao Cai ; 31(3): 445-7, 2008 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-18619255

RESUMO

OBJECTIVE: To study the transdermal absorption characteristics of brucine in vitro. METHODS: The oil-water partition coefficient of brucine was measured. Drug permeation tests were performed through excised rat skin in improved Franz diffusion cell. Brucine concentration in samples was determined by HPLC. RESULTS: The oil-water partition coefficient of brucine was between 4.05 and 5.02 at different temperatures. The permeation rate of 0.5 and 1 mg/ml brucine solution were (1.83 +/- 0.85) and (3.74 +/- 1.54) microg/cm2 x h, respectively. The cumulative permeation ratio in 24 hours were (51.30 +/- 18.51)% and (50.01 +/- 12. 80)%, respectively. CONCLUSION: The research provides experimental datas for the design of transdermal delivery system of brucine.


Assuntos
Plantas Medicinais/química , Absorção Cutânea , Estricnina/análogos & derivados , Strychnos nux-vomica/química , Administração Cutânea , Animais , Cromatografia Líquida de Alta Pressão , Técnicas In Vitro , Masculino , Permeabilidade , Soluções Farmacêuticas , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Solubilidade , Estricnina/administração & dosagem , Estricnina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA