Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 18: 1534735419890917, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31855073

RESUMO

Background: Current treatment of osteosarcoma is limited in part by side effects and low tolerability, problems generally avoided with traditional Chinese medicine. Ganoderma lucidum, a traditional Chinese medicine with antitumor effects, offers a potential alternative, but little is known about its molecular mechanisms in osteosarcoma cells. Objective: To investigate the effect of G lucidum on osteosarcoma cells and its mechanism. Methods: Osteosarcoma MG63 and U2-OS cells were treated with G lucidum, followed by assays for cell proliferation (Cell Counting Kit-8), colony formation, and apoptosis (Alexa Fluor 647-Annexin V/propidium iodide, flow cytometry). Migration and invasion of cells were assessed by wound healing and Transwell invasion assays, and the effect of G lucidum on Wnt/ß-catenin signal transduction was studied by real-time quantitative polymerase chain reaction, western blot, and dual-luciferase assay. Results:G lucidum inhibited the proliferation, migration, and invasion, and induced apoptosis of human osteosarcoma MG63 and U2-OS cells. Dual-luciferase assay showed that G lucidum suppressed the transcriptional activity of T-cell factor/lymphocyte enhancer factor in the Wnt/ß-catenin signaling pathway. Moreover, G lucidum blocked Wnt/ß-catenin signaling by inhibiting the Wnt co-receptor LRP5 and Wnt-related target genes, such as ß-catenin, cyclin D1, C-Myc, MMP-2, and MMP-9. At the same time, when Wnt/ß-catenin was inhibited, the expression of E-cadherin was upregulated. Conclusions: Our results suggest that G lucidum broadly suppresses osteosarcoma cell growth by inhibiting Wnt/ß-catenin signaling.


Assuntos
Produtos Biológicos/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Reishi/química , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
2.
Stem Cells Int ; 2016: 7130653, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069482

RESUMO

Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 µg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA