Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6294-6306, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211986

RESUMO

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Assuntos
Moduladores de Receptores de Canabinoides , Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologia
2.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163968

RESUMO

As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor CB2 de Canabinoide/agonistas , Animais , Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , China , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células RAW 264.7 , Receptor CB2 de Canabinoide/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3540-3550, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402276

RESUMO

Cannabinoid receptor type 2( CB2 R),a member of the G protein-coupled receptor( GPCR) superfamily,has a variety of biological activities,such as regulating pain response,resisting inflammation and fibrosis,and mediating bone metabolism. Some CB2 R regulators exhibit a good regulatory effect on bone metabolism. Cannabinoids in Cannabis sativa can cause psychoactive effects despite various pharmacological actions they exerted by targeting CB2 R. Therefore,it is of great significance to discover CB2 R regulators in non-Cannabis plants for finding new lead compounds without psychoactive effects and elucidating the action mechanism of plant drugs. The present study clarifies the discovery,structure,and physiological functions of CB2 R,especially its regulatory effects on bone metabolism,summarized CB2 R regulators extracted from non-Cannabis plants,and systematically analyzes the regulatory effects of CB2 R regulators on bone metabolism in animals,osteoblasts,and osteoclasts,to provide a scientific basis for the discovery of new CB2 R regulators and the development of anti-osteoporotic drugs.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Osteoblastos , Osteoclastos , Receptores de Canabinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA