Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 368: 329-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431094

RESUMO

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment. Using multiple murine RA models such as collagen-induced arthritis (CIA), we found that CRV, a macrophage-targeting peptide, can selectively home to the inflammatory synovium of RA joints upon intravenous injection. The expression of the CRV receptor, retinoid X receptor beta (RXRB), was also elevated in the inflammatory synovium, likely being the basis of CRV targeting. CRV-conjugated DEX increased the accumulation of DEX in the inflamed synovium but not in healthy organs of CIA mice. Therefore, CRV-DEX demonstrated a stronger efficacy to suppress synovial inflammation and alleviate cartilage/bone destruction. Meanwhile, CRV conjugation reduced immune-related adverse effects of DEX even after a long-term use. Last, we found that RXRB expression was significantly elevated in human patient samples, demonstrating the potential of clinical translation. Taken together, we provide a novel, peptide-targeted strategy to improve the therapeutic efficacy and safety of glucocorticoids for RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Glucocorticoides/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Inflamação , Artrite Experimental/tratamento farmacológico , Peptídeos/uso terapêutico , Índice Terapêutico
2.
Biomater Sci ; 11(16): 5641-5652, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409576

RESUMO

Our previous research discovered that combining the PDA-PEG polymer with copper ions can selectively kill cancer cells. However, the precise mechanism by which this combination functions was not fully understood. This study revealed that the PDA-PEG polymer and copper ions form complementary PDA-PEG/copper (Poly/Cu) nanocomplexes by facilitating copper ion uptake and lysosomal escape. An in vitro study found that Poly/Cu killed 4T1 cells through a lysosome cell death pathway. Furthermore, Poly/Cu inhibited both the proteasome function and autophagy pathway and induced immunogenic cell death (ICD) in 4T1 cells. The Poly/Cu induced ICD coupled with the checkpoint blockade effect of the anti-PD-L1 antibody (aPD-L1) synergistically promoted immune cell penetration into the tumor mass. Benefiting from the tumor-targeting effect and cancer cell-selective killing effect of Poly/Cu complexes, the combinatory treatment of aPD-L1 and Poly/Cu effectively suppressed the progression of triple-negative breast cancer without inducing systemic side effects.


Assuntos
Polímeros , Neoplasias de Mama Triplo Negativas , Humanos , Polímeros/uso terapêutico , Cobre/farmacologia , Cobre/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Imunoterapia , Lisossomos , Morte Celular , Linfócitos , Linhagem Celular Tumoral
3.
Adv Healthc Mater ; 9(19): e2001128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893507

RESUMO

Anticancer drug-loaded nanoparticles have been explored extensively to decrease side effects while improving their therapeutic efficacy. However, due to the low drug loading content, premature drug release, nonstandardized carrier structure, and difficulty in predicting the fate of the carrier, only a few nanomedicines have been approved for clincial use. Herein, a carrier-free nanoparticle based on the self-assembly of the curcumin-erlotinib conjugate (EPC) is developed. The EPC nanoassembly exhibits more potent cell killing, better antimigration, and anti-invasion effects for BxPC-3 pancreatic cancer cells than the combination of free curcumin and erlotinib. Furthermore, benefiting from both passive and active tumor targeting effect, EPC nanoassembly can effectively accumulate in the tumor tissue in a xenograft pancreatic tumor mouse model. Consequently, EPC effectively reduces the growth of pancreatic tumors and extends the median survival time of the tumor-bearing mice from 22 to 68 days. In addition, no systemic toxicity is detected in the mice receiving EPC treatment. Attributed to the uniformity of the curcumin-erlotinib conjugate and easiness of scaling up, it is expected that the EPC can be translated into a powerful tool in fighting against pancreatic cancer and other epidermal growth factor receptor positive cancers.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias Pancreáticas , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Curcumina/uso terapêutico , Cloridrato de Erlotinib , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Small ; 16(38): e2003398, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32797711

RESUMO

Photothermal therapy (PTT) has attracted tremendous attention due to its noninvasiveness and localized treatment advantages. However, heat shock proteins (HSPs) associated self-preservation mechanisms bestow cancer cells thermoresistance to protect them from the damage of PTT. To minimize the thermoresistance of cancer cells and improve the efficacy of PTT, an integrated on-demand nanoplatform composed of a photothermal conversion core (gold nanorod, GNR), a cargo of a HSPs inhibitor (triptolide, TPL), a mesoporous silica based nanoreservoir, and a photothermal and redox di-responsive polymer shell is developed. The nanoplatform can be enriched in the tumor site, and internalized into cancer cells, releasing the encapsulated TPL under the trigger of intracellular elevated glutathione and near-infrared laser irradiation. Ultimately, the liberated TPL could diminish thermoresistance of cancer cells by antagonizing the PTT induced heat shock response via multiple mechanisms to maximize the PTT effect for cancer treatment.


Assuntos
Ouro , Terapia Fototérmica , Diterpenos , Compostos de Epóxi , Oxirredução , Fenantrenos , Fototerapia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA