Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 345: 120-137, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276301

RESUMO

Due to the unique microenvironment, nanoparticles cannot easily penetrate deeply into tumours, which decreases their therapeutic efficacy. Thus, new strategies should be developed to solve this problem and increase the efficacy of nanomedicine. In this study, gold nanoraspberries (GNRs) were constructed using ultrasmall gold nanospheres (UGNPs) with a matrix metalloproteinase (MMP)-2/9-sensitive peptide as a cross-linking agent. These UGNPs were then modified with trastuzumab (TRA) and mertansine derivatives (DM1) via the AuS bond. TRA targets the human epidermal growth factor receptor-2 (Her-2) which is overexpressed on Her-2+ breast cancer cells. The AuS bond in GNRs-DM1 can be replaced by the free sulfhydryl group of GSH, which could achieve GSH dependent redox responsive release of the drug. In the mouse model of Her-2+ breast cancer, a "positive feedback" triple enhanced penetration platform was construct to treat tumours. Firstly, near-infrared light-triggered photothermal conversion increased vascular permeability, resulting in nanoparticle penetration. Secondly, GNRs disintegrated into UGNPs in response to stimulation with MMPs. GNRs with larger particle sizes reached the tumour site through EPR effect and active targeting. Meanwhile, UGNPs with smaller particle sizes penetrated deeply into the tumour through diffusion. Thirdly, the UGNPs transformed activated cancer-associated fibroblasts to a quiescent state, which reduced intercellular pressure and promoted the penetration of the UGNPs into the interior of the tumour. In turn, an increase in the number of nanoparticles penetrating into the tumour led to a "positive feedback" loop of triple enhanced photothermal effects and further self-amplify the permeability in vivo. Interventional photothermal therapy (IPTT) was used to improve the therapeutic efficacy by reducing the laser power attenuation caused by percutaneous irradiation. The GNRs also showed excellent multimode imaging (computed tomography, photoacoustic imaging and photothermal imaging) capabilities and high anti-tumour efficacy due to efficient tumour targeting and triple enhanced deep penetration into the tumour site. Thus, these MMP-2/redox dual-responsive GNRs are promising carriers of drugs targeting human epidermal growth factor receptor 2+ breast cancer.


Assuntos
Nanosferas , Nanotubos , Animais , Linhagem Celular Tumoral , Retroalimentação , Ouro/química , Camundongos , Nanotubos/química , Fototerapia , Terapia Fototérmica
2.
J Nanobiotechnology ; 19(1): 293, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579725

RESUMO

BACKGROUND: Breast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3-5 nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible. RESULTS: The prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. CONCLUSIONS: This optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ouro/química , Ouro/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Hipertermia Induzida , Raios Infravermelhos , Nanopartículas Metálicas/química , Camundongos , Fotoquimioterapia/métodos , Fototerapia , Receptor ErbB-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA