Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381205

RESUMO

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Tolerância ao Sal/genética , Brassica napus/genética , Pectinas , Estresse Salino , Parede Celular , Desmetilação
2.
J Agric Food Chem ; 70(1): 415-426, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34951540

RESUMO

Steroidal glycoalkaloids (SGAs) present in germinated potato tubers are toxic; however, the mechanisms underlying SGA metabolism are poorly understood. Therefore, integrated transcriptome, metabolome, and hormone analyses were performed in this study to identify and characterize the key regulatory genes, metabolites, and phytohormones related to glycoalkaloid regulation. Based on transcriptome sequencing of bud eyes of germinated and dormant potato tubers, a total of 6260 differentially expressed genes were identified, which were mainly responsible for phytohormone signal transduction, carbohydrate metabolism, and secondary metabolite biosynthesis. Two TCP14 genes were identified as the core transcription factors that potentially regulate SGA synthesis. Metabolite analysis indicated that 149 significantly different metabolites were detected, and they were enriched in metabolic and biosynthetic pathways of secondary metabolites. In these pathways, the α-solanine content was increased and the expression of genes related to glycoalkaloid biosynthesis was upregulated. Levels of gibberellin and jasmonic acid were increased, whereas that of abscisic acid was decreased. This study lays a foundation for investigating the biosynthesis and regulation of SGAs and provides the reference for the production and consumption of potato tubers.


Assuntos
Solanum tuberosum , Vias Biossintéticas , Tubérculos/genética , Metabolismo Secundário , Solanum tuberosum/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA