Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 926945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059938

RESUMO

Dysregulated immune response plays a pivotal role in Ulcerative colitis. In lamina propria of inflammatory colonic mucosa, macrophages tend to polarize into M1 type and metabolically reprogram to aerobic glycolysis. PKM2 orchestrates glucose metabolic switch in macrophages, which tetramer has high pyruvate kinase activity, while which dimer mainly works as a protein kinase to stabilize HIF-1α and mediate anabolism. Shikonin is a potent PKM2 inhibitor derived from traditional Chinese medicine Arnebiae Radix with anti-inflammatory and anticarcinogen activities. However, it is unclear which conformation of PKM2 is inhibited by Shikonin, and whether this inhibition mediates pharmacological effect of Shikonin. In this study, we examined the efficacy of Shikonin on dextran sulfate sodium-induced mice colitis and determined the states of PKM2 aggregation after Shikonin treatment. Results showed that Shikonin dose-dependently alleviated mice colitis, down-regulated expression of F4/80, iNOS and CD86, decreased IFN-γ, IL-1ß, IL-6 and TNF-α, while increased IL-10 in mice colon. Furthermore, Shikonin suppressed the pyruvate, lactate production and glucose consumption, inhibited the pyruvate kinase activity and nuclear translocation of PKM2, and decreased both dimerization and tetramerization of PKM2 in macrophages. In vitro assay revealed that Shikonin bounded to PKM2 protein, inhibited the formation of both dimer and tetramer, while promoted aggregation of PKM2 macromolecular polymer. TEPP-46, an activator of PKM2 tetramerization, attenuated the ameliorative effect of Shikonin on disuccinimidyl suberate mice. In summary, Shikonin improved mice colitis, which mechanism may be mediated by inhibiting dimerization and tetramerization of PKM2, suppressing aerobic glycolysis reprogram, improving mitochondrial dynamic, and therefore alleviating inflammatory response of macrophages.

2.
Int J Oncol ; 51(1): 257-268, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534954

RESUMO

The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Uncaria/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA