RESUMO
Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.
Assuntos
Globo Pálido/fisiopatologia , Hipercinese/fisiopatologia , Córtex Motor/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Tremor/fisiopatologia , 4-Aminopiridina/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Hipercinese/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Optogenética/métodos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica , Tremor/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologiaRESUMO
The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations.