Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 91: 153706, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34517264

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cause of cancer-related death worldwide. Curcumin (C) has been extensively investigated in different types of malignancies, including hepatocellular carcinoma, but its physicochemical properties have significantly influenced its clinical use. Several approaches are being explored to enhance curcumin's therapeutic response, including its combination with various drugs. PURPOSE: This study aimed to evaluate the anti-tumor effect of curcumin (C) in combination with F2 (N-n-butyl haloperidol iodide) on hepatocellular carcinoma and its potential underlying mechanism in vitro and in vivo. METHODS: Cell proliferation was evaluated by CCK-8 and colony formation assays, and apoptosis was measured by flow cytometry. The migratory and invasive abilities of Hep3B and SMMC-7721 cells were measured by wound-healing and matrigel transwell assays. In order to investigate the molecular pathways, various experiments such as western blotting, qPCR, RNA-seq, immunostaining and transfection were performed. To evaluate the anti-HCC effects in vivo, a xenograft tumor model was used. RESULTS: Our findings showed that the combination of curcumin (C) & F2 (F2C) strongly inhibited malignant proliferation and migration in SMMC-7721 and Hep3B cells. The F2C treatment downregulates enhancer of zeste homolog 2 (EZH2) transcription and protein expression, which is key epigenetic regulator responsible for HCC development. Moreover, the inhibition of EZH2 by F2C led to Wnt/ß-catenin signaling inhibition by decreasing tri-methylation of histone H3 at lysine 27 (H3K27me3) and long non-coding RNA H19 expression. The inhibition of F2C was associated with the suppression of tumorigenicity in xenograft HCC models. CONCLUSION: These findings suggested that, F2C inhibited HCC formation, migration and its modulatory mechanism seemed to be associated with downregulation of EZH2, silencing Wnt/ß-catenin signaling by interacting with H19, suggesting that F2C may be a promising drug in the clinical treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Curcumina , Haloperidol/análogos & derivados , Neoplasias Hepáticas , RNA Longo não Codificante , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Haloperidol/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Nus , RNA Longo não Codificante/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Braz J Microbiol ; 50(1): 53-65, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30610493

RESUMO

Pectinase is a general term for a class of enzymes that decompose pectin. To obtain a fungal strain with high-activity pectinase of potential commercial importance, we screened microorganisms from the soil of vineyards, performed mutation breeding by ultraviolet (UV) and nitrosoguanidine (NTG) mutagenesis, and performed comparisons to commercially available pectinases. We found that the derived pectinase-producing strain Rn14-88A had the highest pectinase activity of 8363.215 U/mL, and identified it using internal transcribed spacer sequence analysis as Aspergillus tubingensis. Rn14-88A was the original strain for UV mutagenesis, from which mutant strain R-7-2-4 had the highest pectinase enzyme activity (9198.68 U/mL), which was a 9.99% increase compared to that of Rn14-88A. Following NTG mutagenesis of R-7-2-4, mutant strain Y1-3-2-6 had a pectinase enzyme activity of 9843.34 U/mL, which reflects a 6.36% increase compared to the pectinase activity of R-7-2-4. Subsequently, another round of NTG mutagenesis was performed on Y1-3-2-6, and the mutagenic strain Y2-6-3-4 exhibited an improved enzyme activity of 21,864.34 U/mL, which was 161.44% higher than that of Rn14-88A. Through liquid fermentation experiments of A. tubingensis Y2-6-3-4, it was determined that pectinase activity was the highest at a fermentation time of 20 h. Therefore, we conclude that A. tubingensis Y2-6-3-4 has potential for use in commercial production.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Poligalacturonase/metabolismo , Aspergillus/genética , Aspergillus/isolamento & purificação , Fermentação , Proteínas Fúngicas/genética , Mutagênese , Mutação , Pectinas/metabolismo , Poligalacturonase/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA