Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503154

RESUMO

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Assuntos
Proliferação de Células , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Evodia/química , Gencitabina , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biosci Rep ; 41(2)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33506873

RESUMO

BACKGROUND: Aidi injection (ADI) is an effective Traditional Chinese medicine preparation widely used for lung cancer. However, the pharmacological mechanisms of ADI on lung cancer remain to be elucidated. METHODS: A network pharmacology (NP)-based approach and the molecular docking validation were conducted to explore underlying mechanisms of ADI on lung cancer. The compounds and target genes were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (Batman-TCM) database. The STRING database was utilized for protein interaction network construction. The R package clusterProfiler was used for bioinformatics annotation of hub target genes. The gene expression analysis and survival analysis were performed based on The Cancer Genome Atlas (TCGA) database. The Autodock Vina was used for molecular docking validation. RESULTS: A total of five key compounds with 324 putative target genes were screened out, and 14 hub target genes were identified for treating lung cancer. Six hub genes could influence the survival of non-small cell lung cancer (NSCLC) patients. Of these hub genes, the expression pattern of EGFR, MYC, PIK3CA, and SMAD3 were significantly higher in the LUSC, while PIK3CA and RELA expressed lower in the LUAD group and LUSC group, respectively. These six hub genes had good docking affinity with the key compounds of ADI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ADI may exert therapeutic effects on lung cancer by regulating critical pathways including the thyroid hormone signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. CONCLUSIONS: The present study explored the potential pharmacological mechanisms of ADI on lung cancer, promoting the clinical application of ADI in treating lung cancer, and providing references for advanced researches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Medicina Tradicional Chinesa , Carcinoma Pulmonar de Células não Pequenas/genética , Biologia Computacional , Humanos , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas
3.
Artigo em Inglês | MEDLINE | ID: mdl-32595734

RESUMO

BACKGROUND: HeChan tablet (HCT) is a traditional Chinese medicine preparation extensively prescribed to treat lung cancer in China. However, the pharmacological mechanisms of HCT on lung cancer remain to be elucidated. METHODS: A comprehensive network pharmacology-based strategy was conducted to explore underlying mechanisms of HCT on lung cancer. Putative targets and compounds of HCT were retrieved from TCMSP and BATMAN-TCM databases; related genes of lung cancer were retrieved from OMIM and DisGeNET databases; known therapeutic target genes of lung cancer were retrieved from TTD and DrugBank databases; PPI networks among target genes were constructed to filter hub genes by STRING. Furthermore, the pathway and GO enrichment analysis of hub genes was performed by clusterProfiler, and the clinical significance of hub genes was identified by The Cancer Genome Atlas. RESULT: A total of 206 compounds and 2,433 target genes of HCT were obtained. 5,317 related genes of lung cancer and 77 known therapeutic target genes of lung cancer were identified. 507 unique target genes were identified among HCT-related genes of lung cancer and 34 unique target genes were identified among HCT-known therapeutic target genes of lung cancer. By PPI networks, 11 target genes AKT1, TP53, MAPK8, JUN, EGFR, TNF, INS, IL-6, MYC, VEGFA, and MAPK1 were identified as major hub genes. IL-6, JUN, EGFR, and MYC were shown to associate with the survival of lung cancer patients. Five compounds of HCT, quercetin, luteolin, kaempferol, beta-sitosterol, and baicalein were recognized as key compounds of HCT on lung cancer. The gene enrichment analysis implied that HCT probably benefitted patients with lung cancer by modulating the MAPK and PI3K-Akt pathways. CONCLUSION: This study predicted pharmacological and molecular mechanisms of HCT against lung cancer and could pave the way for further experimental research and clinical application of HCT.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32382311

RESUMO

Arenobufagin (ARE) has demonstrated potent anticancer activity in various types of tumor, but the role and mechanism of ARE for lung cancer remain unclear. Oxidative stress exists under normal conditions and is an inevitable state in the body. A variety of noxious stimuli can break the equilibrium state of oxidative stress and promote apoptosis. Here, we used a CCK-8 assay to examine cell viability. We determined oxidative stress damage by measuring levels of intracellular ROS and levels of GSH, SOD, and MDA. Annexin V-FITC/PI double staining assay, as well as the Hoechst 33258 staining, was used to detect ARE-induced apoptosis in A549 cell. Evaluation of the expression level of the specified molecule was indicated by Western blot and qRT-PCR. Loss of function experiment was carried out using NAC pretreatment. The experimental results show that ARE significantly declines in the viability of A549 cells and increases the apoptosis rate of A549 cells. As reflected in cell morphology, the A549 cells showed features of shrinkage and had incompletely packed membranes; the same phenomenon is manifested in Hoechst 33258 staining. Following ARE treatment, the ROS level in A549 cells was rising in a concentration-dependent manner, and so were MDA and GSH levels, while the SOD level was decreasing. Moreover, we found that ARE can decrease mitochondrial membrane potential (MMP), and a cascade of apoptotic processes can be triggered by decreased MMP. Importantly, we found significant changes in protein expression levels and mRNA levels of apoptosis-related proteins. Furthermore, when we used NAC to restrain oxidative stress, the expression levels of apoptosis-related proteins have also changed accordingly. Our data demonstrate that apoptosis in the non-small-cell lung cancer (NSCLC) cell line A549 is caused by oxidative stress due to ARE. Our research also shows that ARE may have the potential to become a targeted therapeutic for the treatment of NSCLC in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA