Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(43): 16184-16193, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853551

RESUMO

Leucine, a kind of branched-chain amino acid, plays a regulatory role in the milk production of mammalian mammary glands, but its regulatory functions and underlying molecular mechanisms remain unknown. This work showed that a leucine-enriched mixture (LEUem) supplementation increased the levels of milk protein and milk fat synthesis in primary bovine mammary epithelial cells (BMECs). RNA-seq of leucine-treated BMECs indicated alterations in lipid metabolism, translation, ribosomal structure and biogenesis, and inflammatory response signaling pathways. Meanwhile, the supplementation of leucine resulted in mTOR activation and increased the expression of BCKDHA, FASN, ACC, and SCD1. Interestingly, the expression of PPARα was independently correlated with the leucine-supplemented dose. PPARα activated by WY-14643 caused significant suppression of lipogenic genes expression. Furthermore, WY-14643 attenuated leucine-induced ß-casein synthesis and enhanced the level of BCKDHA expression. Moreover, promoter analysis revealed a peroxisome-proliferator-response element (PPRE) site in the bovine BCKDHA promoter, and WY-14643 promoted the recruitment of PPARα onto the BCKDHA promoter. Together, the present data indicate that leucine promotes the synthesis of ß-casein and fatty acid and that PPARα-involved leucine catabolism is the key target.


Assuntos
Caseínas , PPAR alfa , Bovinos , Animais , Caseínas/genética , Caseínas/metabolismo , Leucina/farmacologia , Leucina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Glândulas Mamárias Animais/metabolismo , Ácidos Graxos/metabolismo , Células Epiteliais/metabolismo , Mamíferos/metabolismo
2.
Biometals ; 34(6): 1365-1379, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599706

RESUMO

Selenium is an essential trace element that can regulate the function of immnue cells via selenoproteins. However, the effects of selenium on human dendritic cell (DCs) remain unclear. Thus, selenoprotein levels in monocytes, immature DCs (imDCs) and mature DCs (mDCs) treated with or without Na2SeO3 were evaluated using RT-PCR, and then the immune function of imDCs and mDCs was detected by flow cytometry, cell counting and the CCK8 assay. In addition, the effects of Se on cytokine and surface marker expression were investigated by RT-PCR. The results revealed different expression levels of selenoprotein in monocytes, imDCs and mDCs, and selenoproeins could be regulated by Se. Moreover, it was indicated that anti-phagocytic activity was improved by 0.1 µM Se, whereas it was suppressed by 0.2 µM Se in imDCs; The migration of imDCs and mDCs was improved by 0.1 µM Se, whereas their migration was inhibited by treatment with 0.05 or 0.2 µM Se; The mixed lymphocyte reaction of mDCs was improved by 0.1 µM Se, and it was inhibited by 0.05 and 0.2 µM Se. In addition, 0.1 µM Se improved the immune function of DCs through the regulation of CD80, CD86, IL12-p35 and IL12-p40. Wheres 0.05 and 0.2 µM Se impaired immune function of DCs by up-regulation of interleukin (IL-10) in imDCs and down-regulation of CD80, CD86, IL12-p35 and IL12-p40 in mDCs. In conclusion, 0.1 µM Se might improve the immune function of human DCs through selenoproteins.


Assuntos
Selênio , Diferenciação Celular , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Imunidade , Monócitos , Selênio/metabolismo , Selênio/farmacologia
3.
J Agric Food Chem ; 65(43): 9460-9467, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019657

RESUMO

The molecular mechanisms on milk fat depression (MFD) in response to trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) supplementation in ruminants were elucidated in this research with dairy goats. A total of 30 2-year-old Xinong Saanen dairy goats [40 ± 5 days in milk (DIM)] at peak lactation stage were assigned to a 3 × 3 Latin square design (14 day treatment period, followed with 14 day washout). Three CLA treatments included (a) control, fed the basal diet only without CLA supplementation; (b) orally supplemented with 8 g/day of lipid-encapsulated CLA (low dose, CLA-1); and (c) orally supplemented with 16 g/day of lipid-encapsulated CLA (high dose, CLA-2). Expression levels of fatty acid metabolism genes in the mammary tissues were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) in three goats on day 1 and the other three goats on day 14 in each group after the discontinuation of CLA treatment in the third experimental period. Dietary supplementation of CLA led to a significant decrease of milk fat compared to the control (p < 0.05). Milk fat concentrations in CLA-1 and CLA-2 groups were 2.74 and 2.42%, respectively, while the milk fat concentration in the control group was 2.99%. Decreases in short- and medium-chain fatty acids (<16 carbons) and increases in unsaturated fatty acids were observed in the CLA-2 group (p < 0.05). The desaturation indexes of C16 and C18 fatty acids were obviously increased (p < 0.01). RT-qPCR results revealed decreases of the mRNA expression levels of SREBF1, PPARG, LPL, CD36, FABP3, ACSL1, FASN, ACACA, DGAT2, TIP47, ADRP, and BTN1A1 genes in mammary glands (p < 0.05) and an increase of the SCD gene because of CLA supplementation (p < 0.05). In conclusion, t10,c12-CLA-induced MFD was possibly the result from the downregulation of genes involved in lipogenesis in goat mammary glands.


Assuntos
Cabras/genética , Ácidos Linoleicos Conjugados/metabolismo , Lipogênese , Glândulas Mamárias Animais/metabolismo , Animais , Suplementos Nutricionais/análise , Proteína 3 Ligante de Ácido Graxo/genética , Proteína 3 Ligante de Ácido Graxo/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Cabras/metabolismo , Lactação , Leite/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA