Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Genomics ; 16(1): 265, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885006

RESUMO

OBJECTIVE: The impact of inflammatory response on tumor development and therapeutic response is of significant importance in clear cell renal cell carcinoma (ccRCC). The customization of specialized prognostication approaches and the exploration of supplementary treatment options hold critical clinical implications in relation to the inflammatory response. METHODS: In the present study, unsupervised clustering was implemented on TCGA-KIRC tumors using transcriptome profiles of inflammatory response genes, which was then validated in two ccRCC datasets (E-MATB-1980 and ICGC) and two immunotherapy datasets (IMvigor210 and Liu et al.) via SubMap and NTP algorithms. Combining co-expression and LASSO analyses, inflammatory response-based scoring system was defined, which was evaluated in pan-cancer. RESULTS: Three reproducible inflammatory response subtypes (named IR1, IR2 and IR3) were determined and independently verified, each exhibiting distinct molecular, clinical, and immunological characteristics. Among these subtypes, IR2 had the best OS outcomes, followed by IR3 and IR1. In terms of anti-angiogenic agents, sunitinib may be appropriate for IR1 patients, while axitinib and pazopanib may be suitable for IR2 patients, and sorafenib for IR3 patients. Additionally, IR1 patients might benefit from anti-CTLA4 therapy. A scoring system called IRscore was defined for individual ccRCC patients. Patients with high IRscore presented a lower response rate to anti-PD-L1 therapy and worse prognostic outcomes. Pan-cancer analysis demonstrated the immunological features and prognostic relevance of the IRscore. CONCLUSION: Altogether, characterization of inflammatory response subtypes and IRscore provides a roadmap for patient risk stratification and personalized treatment decisions, not only in ccRCC, but also in pan-cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/terapia , Neoplasias Renais/tratamento farmacológico , Medicina de Precisão , Sorafenibe/uso terapêutico , Axitinibe/uso terapêutico , Prognóstico
2.
Ecotoxicol Environ Saf ; 256: 114899, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060801

RESUMO

Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-ß/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Camundongos , Humanos , Animais , Extratos Vegetais/farmacologia , Fígado , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Chá
3.
Oxid Med Cell Longev ; 2018: 3583921, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050654

RESUMO

Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 µM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.


Assuntos
Proteínas 14-3-3/metabolismo , Abietanos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Confocal , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Phytother Res ; 32(6): 1126-1134, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29464855

RESUMO

Ischemia/reperfusion (I/R) injury is the major cause of acute cardiovascular disease worldwide. 14-3-3η protein has been demonstrated to protect myocardium against I/R injury. Luteoloside (Lut), a flavonoid found in many Chinese herbs, exerts myocardial protection effects. However, the mechanism remains unclear. We hypothesize that the cardioprotective role of Lut is exerted by regulating the 14-3-3η signal pathway. To investigate our hypothesis, an in vitro I/R model was generated in H9C2 cardiomyocytes by anoxia/reoxygenation (A/R) treatment. The effects of Lut on cardiomyocytes with A/R injury were assessed by determining the cell viability, lactate dehydrogenase levels, intracellular reactive oxygen species levels, mitochondrial permeability transition pores (mPTP) openness, caspase-3 activity, and apoptosis rate. The effects on protein expression were tested using western blot analysis. Lut attenuated A/R-induced injury to cardiomyocytes by increasing the expression of 14-3-3η protein and cell viability; decreasing levels of lactate dehydrogenase, reactive oxygen species, mPTP openness, caspase-3 activity, and low apoptosis rate were observed. However, the cardioprotective effects of Lut were blocked by AD14-3-3ηRNAi, an adenovirus knocking down the intracellular 14-3-3η expression. In conclusion, to our knowledge, this is the first study to demonstrate that Lut protected cardiomyocytes from A/R-induced injury via the regulation of 14-3-3η signaling pathway.


Assuntos
Proteínas 14-3-3/efeitos dos fármacos , Glucosídeos/uso terapêutico , Hipóxia/tratamento farmacológico , Luteolina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose , Glucosídeos/farmacologia , Luteolina/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-25392587

RESUMO

BACKGROUND: The Kidney has been the target organ for the delivery of silencing ribonucleic acids (silencing RNA) administered systemically in comparison to other body tissues. MATERIALS AND METHOD: In this review, we discussed different approaches made to delivering proteins to the kidneys in different conditions like normal and pathological defects. Data from clinical experiments have been used to discuss and support the administration of silencing RNA for the treatment of kidney diseases. RESULTS: Results were achieved using the available genome wide RNA libraries. CONCLUSION: The research results are helpful in application to 3D and conventional models to find the involvement of signal pathways in kidney diseases.


Assuntos
Terapia Genética , Nefropatias , Rim/metabolismo , Proteínas/metabolismo , Interferência de RNA , RNA , Humanos , Nefropatias/metabolismo , Nefropatias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA