Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Schizophr Bull ; 46(3): 722-731, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603232

RESUMO

Although schizophrenia is a brain disorder, increasing evidence suggests that there may be body-wide involvement in this illness. However, direct evidence of brain structures involved in the presumed peripheral-central interaction in schizophrenia is still unclear. Seventy-nine previously treatment-naïve first-episode schizophrenia patients who were within 2-week antipsychotics initial stabilization, and 41 age- and sex-matched healthy controls were enrolled in the study. Group differences in subcortical brain regional structures measured by MRI and the subclinical cardiovascular, metabolic, immune, and neuroendocrine biomarkers as indexed by allostatic load, and their associations were explored. Compared with controls, patients with schizophrenia had significantly higher allostatic load (P = .001). Lateral ventricle (P < .001), choroid plexus (P < .001), and thalamus volumes (P < .001) were significantly larger, whereas amygdala volume (P = .001) was significantly smaller in patients. The choroid plexus alone was significantly correlated with higher allostatic load after age, sex, education level, and the total intracranial volume were taken into account (t = 3.60, P < .001). Allostatic load was also significantly correlated with PANSS positive (r = 0.28, P = .016) and negative (r = -0.31, P = .008) symptoms, but in opposite directions. The peripheral multisystemic and central nervous system abnormalities in schizophrenia may interact through the choroid plexus during the early stage of the illness. The choroid plexus might provide a sensitive structural biomarker to study the treatment and prevention of brain-periphery interaction abnormalities in schizophrenia.


Assuntos
Alostase , Plexo Corióideo/patologia , Esquizofrenia , Estresse Psicológico , Adulto , Alostase/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Biomarcadores , Plexo Corióideo/diagnóstico por imagem , Feminino , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética , Masculino , Esquizofrenia/imunologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
2.
Appl Microbiol Biotechnol ; 71(4): 473-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16215714

RESUMO

The green alga Chlorella zofingiensis produces large amounts of the valuable ketocarotenoid astaxanthin under dark, heterotrophic growth conditions, making it potentially employable for commercial production of astaxanthin as feed additives, colorants, and health products. Here, we report the identification and characterization of a beta-carotene oxygenase (CRTO) gene that is directly involved in the biosynthesis of ketocarotenoids in C. zofingiensis. The open reading frame of the crtO gene, which is interrupted by three introns of 243, 318, and 351 bp, respectively, encodes a polypeptide of 312 amino acid residues. Only one crtO gene was detected in the genome of C. zofingiensis. Furthermore, the expression of the crtO gene was transiently up-regulated upon glucose treatment. Functional complementation in Escherichia coli showed that the coding protein of the crtO gene not only exhibits normal CRTO activity by converting beta-carotene to canthaxanthin via echinenone, but also displays a high enzymatic activity of converting zeaxanthin to astaxanthin via adonixanthin. Based on the bifunctional CRTO, a predicted pathway for astaxanthin biosynthesis in C. zofingiensis is described, and the CRTO is termed as carotenoid 4,4'-beta-ionone ring oxygenase.


Assuntos
Chlorella/genética , Oxigenases/genética , beta Caroteno/metabolismo , Southern Blotting , Chlorella/enzimologia , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/genética , Fases de Leitura Aberta , Oxigenases/biossíntese , Oxigenases/isolamento & purificação , Oxigenases/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA