Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(4): 512-523, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37668192

RESUMO

Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microfisiológicos , Humanos , Desenvolvimento de Medicamentos , Engenharia Tecidual/métodos , Avaliação Pré-Clínica de Medicamentos/métodos
2.
Front Cardiovasc Med ; 10: 1214116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469481

RESUMO

Secondary lymphedema is a common condition among cancer survivors, and treatment strategies to prevent or treat lymphedema are in high demand. The development of novel strategies to diagnose or treat lymphedema would benefit from a robust experimental animal model of secondary lymphedema. The purpose of this methods paper is to describe and summarize our experience in developing and characterizing a rat hindlimb model of lymphedema. Here we describe a protocol to induce secondary lymphedema that takes advantage of micro computed tomography imaging for limb volume measurements and visualization of lymph drainage with near infrared imaging. To demonstrate the utility of this preclinical model for studying the therapeutic benefit of novel devices, we apply this animal model to test the efficacy of a biomaterials-based implantable medical device.

3.
Biomaterials ; 102: 259-267, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27348849

RESUMO

Secondary lymphedema is a common disorder associated with acquired functional impairment of the lymphatic system. The goal of this study was to evaluate the therapeutic efficacy of aligned nanofibrillar collagen scaffolds (BioBridge) positioned across the area of lymphatic obstruction in guiding lymphatic regeneration. In a porcine model of acquired lymphedema, animals were treated with BioBridge scaffolds, alone or in conjunction with autologous lymph node transfer as a source of endogenous lymphatic growth factor. They were compared with a surgical control group and a second control group in which the implanted BioBridge was supplemented with exogenous vascular endothelial growth factor-C (VEGF-C). Three months after implantation, immunofluorescence staining of lymphatic vessels demonstrated a significant increase in lymphatic collectors within close proximity to the scaffolds. To quantify the functional impact of scaffold implantation, bioimpedance was used as an early indicator of extracellular fluid accumulation. In comparison to the levels prior to implantation, the bioimpedance ratio was significantly improved only in the experimental BioBridge recipients with or without lymph node transfer, suggesting restoration of functional lymphatic drainage. These results further correlated with quantifiable lymphatic collectors, as visualized by contrast-enhanced computed tomography. They demonstrate the therapeutic potential of BioBridge scaffolds in secondary lymphedema.


Assuntos
Colágeno/uso terapêutico , Linfangiogênese , Linfedema/terapia , Nanofibras/uso terapêutico , Alicerces Teciduais/química , Fator C de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Colágeno/química , Feminino , Linfedema/patologia , Nanofibras/química , Suínos , Porco Miniatura , Fator C de Crescimento do Endotélio Vascular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA