Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 282: 131137, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470173

RESUMO

This study investigated biological treatment for two kinds of volatile organic compounds (VOCs)-containing wastewaters collected from wet scrubbers in a semiconductor industry. Batch test results indicated that one wastewater containing highly volatile organic compounds was not suitable for aerated treatment conditions while the other containing much lower volatile organic compounds was suitable for aerobic treatment. Accordingly, two moving bed bioreactors, by adding commercial biocarrier BioNET, were operated under aerobic and anoxic conditions for treating low volatility wastewater (LVW) and high volatility wastewater (HVW), respectively. During 280 days of operation, the aerobic LVW bioreactor attained the highest chemical oxygen demand (COD) removal rate of 98.9 mg-COD/L/h with 81% of COD removal efficiency at hydraulic retention time (HRT) of 1 day. The anoxic HVW bioreactor performed above 80% of COD removal efficiency with the highest COD removal rate of 16.5 mg-COD/L/h at HRT of 2 days after 380 days of operation. The specific COD removal rates at different initial substrate-to-biomass (S0/X0) ratios, using either suspended sludge or microorganisms attached onto BioNET from both bioreactors, followed the Monod-type kinetics, while the half-saturation coefficients were generally higher for the microorganisms onto BioNET due presumably to relatively poor mass transfer efficiency. Based on the results of microbial community analysis using the next generation sequencing technique, the dominant communities of suspended sludge and BioNET, including nitrifiers, denitrifiers, and degraders for polycyclic aromatic hydrocarbons, were similar in the corresponded bioreactors, but microbial community shifts were observed with increased organic loadings.


Assuntos
Compostos Orgânicos Voláteis , Águas Residuárias , Reatores Biológicos , Semicondutores , Esgotos
2.
Lasers Surg Med ; 53(4): 549-556, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32757279

RESUMO

BACKGROUND AND OBJECTIVES: We previously demonstrated that intense pulsed light (IPL) irradiation prior to wounding improved the wound healing in rats with diabetes mellitus (DM). Also, we found that IPL upregulated the expression of aquaporin 3 (AQP3), a protein that is crucial for wound healing, in normal rats. This present study aimed to examine the involvement of AQPs in the IPL-enhanced wound healing in diabetic rats. STUDY DESIGN/MATERIALS AND METHODS: Streptozotocin was used to induce diabetes in Sprague-Dawley rats. Animals were divided into four groups: normal group, DM only group, DM rats with IPL treatment 2 weeks before wounding (DM + IPL-Pre group), and DM rats with concurrent IPL irradiation and wounding (DM + IPL-Con group). Wounds were created on the dorsal skin of rats. The expressions of AQP1, 3, 4, 7, and 9 in the pre-injured skin, periwound, and wound were determined. RESULTS: Among all the AQPs analyzed, only the expressions of AQP3 and AQP7 were significantly altered. Unirradiated diabetic rats showed much higher expression level of AQP3 in the regenerating skin compared with normal rats. IPL pretreatment, but not concurrent treatment, attenuated the expression toward the level detected in the normal wounds. In contrast, a lower expression level of AQP7 was noted in the regenerating skin of DM only rats and IPL pretreatment upregulated the expression to a level similar to that in the normal rats. CONCLUSION: The beneficial effect of IPL pretreatment on the wound healing in diabetic rats might involve a mechanism by which the expression of AQPs is regulated. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Aquaporinas , Diabetes Mellitus Experimental , Fototerapia , Cicatrização , Animais , Aquaporinas/metabolismo , Ratos , Ratos Sprague-Dawley , Pele
3.
J Med Food ; 20(2): 171-179, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28061036

RESUMO

The extraction yield, total phenols, caffeic acid derivatives (CAD), and antioxidant properties of 50% ethanolic Echinacea purpurea flower extract were determined. The in vitro inhibitory effects of 50% ethanolic extract and CAD on α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) linked with type 2 diabetes were also investigated. The extraction yield, total phenols, and total CAD of the extract were 27.04%, 195.69 mg CAE/g and 78.42 mg/g, respectively. Cichoric acid (56.03 mg/g) was the predominant CAD compound in the extract. The extract exhibited good antioxidant properties. The extract and CAD inhibited α-amylase, α-glucosidase, and ACE activities in a concentration-dependent manner. Among the tested samples, chlorogenic acid, and caffeic acid (IC50 of 1.71-1.81 mg/mL) had the highest α-amylase inhibitory activity, cichoric acid (IC50 of 0.28 mg/mL) showed higher α-glucosidase inhibitory activity. Both chlorogenic acid and caffeic acid (IC50 of 0.11-0.14 mg/mL) demonstrated higher ACE-inhibitory activity. The in vitro results suggest that E. purpurea extract and CAD have good potential for managing hyperglycemia and hypertension. Overall, the data suggest it is a choice for developing antihyperglycemia and antihypertension compounds from field-grown E. purpurea.


Assuntos
Anti-Hipertensivos/química , Antioxidantes/química , Ácidos Cafeicos/química , Echinacea/química , Hipoglicemiantes/química , Extratos Vegetais/química , Inibidores Enzimáticos/química , Flores/química , Humanos , Cinética , Peptidil Dipeptidase A/química , Fenóis/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA