Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 1066244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506541

RESUMO

Background: Fuzheng Nizeng Decoction (FZNZ) has a history of decades in gastric precancerous lesions (GPL) treatment, which has shown clear clinical efficacy. Blocking GPL is a key measure to reduce the incidence of gastric cancer (GC). Therefore, we aim to investigate the mechanism of FZNZ-induced ferroptosis and endoplasmic reticulum (ER) in MNNG-induced gastric precancerous lesion (MC) cells, which has been rarely studied in Traditional Chinese Medicine (TCM). Methods: First, CCK8 and lactate dehydrogenase assays were conducted to study the potential effect of FZNZ on MC cells. Second, combined transcriptomic and metabolomic analysis were used to explore the effect and mechanism of FZNZ. Functionally, the occurrence of ferroptosis was assessed by transmission electron microscopy morphological observation and measurement of ferrous iron levels, lipid peroxidation, and glutathione levels. Finally, the expression levels of mRNAs or proteins related to ferroptosis and ER stress were determined by qPCR or western blot assays, respectively. Results: FZNZ inhibited MC cells viability and induced cell death. By metabolomics coupled with transcriptomics analysis, we found that the mechanism of FZNZ treatment induced ferroptosis and was related to glutathione metabolism and ER stress. We then, for the first time, found that FZNZ induced ferroptosis, which contributed to an increase in intracellular ferrous iron, reactive oxygen species, and malondialdehyde and a decrease in glutathione. Meanwhile, the protein level of glutathione peroxidase 4 (GPX4) was decreased. The mRNA levels of ATF3/CHOP/CHAC1, which are related to ferroptosis and ER stress, were also upregulated. Conclusion: Our results elaborate that FZNZ could induce ferroptosis and ER stress in MC cells, and reduce GPX4/GSH. ATF3/CHOP/CHAC1 may play a crosstalk role, which provides a new molecular mechanism for the treatment of GPL.

2.
Front Med (Lausanne) ; 8: 713908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660627

RESUMO

Helicobacter pylori (H. pylori) has so far infected more than half the global population. It is the most important and controllable risk factor for gastric cancer. The elderly, who are at a higher incidence of the infection, are also commonly found to develop antibiotic resistance. The symptoms, diagnosis, clinical features (of gastric or extra-digestive diseases), and treatment of H. pylori infection in the elderly, are different from that in the non-elderly. Health conditions, including comorbidities and combined medication have limited the use of regular therapies in elderly patients. However, they can still benefit from eradication therapy, thus preventing gastric mucosal lesions and gastric cancer. In addition, new approaches, such as dual therapy and complementary therapy, have the potential to treat older patients with H. pylori infection.

3.
Int J Oncol ; 48(6): 2608-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082429

RESUMO

Oridonin (Ori), a diterpenoid compound extracted from traditional medicinal herbs, elicits antitumor effects on many cancer types. However, whether Ori can be used in gefitinib-resistant non-small cell lung cancer (NSCLC) cells remains unclear. This study investigated the antitumor activity and underlying mechanisms of Ori. Results demonstrated that this compound dose-dependently inhibited the proliferation, invasion, and migration of the gefitinib-resistant NSCLC cells in vitro. Ori also significantly downregulated the phosphorylation of EGFR, ERK, Akt, expression levels of matrix metalloproteinase-12 (MMP-12), and the cancerous inhibitor of protein phosphatase 2A (CIP2A). In addition, Ori upregulated protein phosphatase 2A (PP2A) activity of gefitinib-resistant NSCLC cells. Ori combined with docetaxel synergistically inhibited these cells. Ori also inhibited tumor growth in murine models. Immunohistochemistry results further revealed that Ori downregulated phospho-EGFR, MMP-12, and CIP2A in vivo. These findings indicated that Ori can inhibit the proliferation, invasion, and migration of gefitinib-resistant NSCLC cells by suppressing EGFR/ERK/MMP-12 and CIP2A/PP2A/Akt signaling pathways. Thus, Ori may be a novel effective candidate to treat gefitinib-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diterpenos do Tipo Caurano/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/administração & dosagem , Células A549 , Animais , Autoantígenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 12 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA