Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(7): 3380-3394, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498054

RESUMO

Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 µL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1ß tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Tricotecenos , Animais , Camundongos , Função da Barreira Intestinal , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peso Corporal , Oligossacarídeos/efeitos adversos , Fosfatos
2.
Poult Sci ; 103(3): 103382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176373

RESUMO

Deficiencies or excesses of dietary amino acids, and especially of methionine (Met), in laying hens can lead to abnormal protein anabolism and oxidative stress, which affect methylation and cause cellular dysfunction. This study investigated the effects of dietary methionine (Met) levels on growth performance, metabolism, immune response, antioxidant capacity, and the subsequent development of laying hens. A total of 384 healthy 1-day-old Hyline Grey chicks of similar body weight were randomly allocated to be fed diets containing 0.31%, 0.38%, 0.43% (control group), or 0.54% Met for 6 wk, with 6 replicates of 16 chicks in each. The growth performance of the chicks was then followed until 20 wk old. The results showed dietary supplementation with 0.43% or 0.54% Met significantly increased their mean daily body weight gain, final weight, and Met intake. However, the feed:gain (F/G) decreased linearly with increasing Met supplementation, from 0.31 to 0.54% Met. Met supplementation increased the serum albumin, IgM, and total glutathione concentrations of 14-day-old chicks. In contrast, the serum alkaline phosphatase activity and hydroxyl radical concentration tended to decrease with increasing Met supplementation. In addition, the highest serum concentrations of IL-10, T-SOD, and GSH-PX were in the 0.54% Met-fed group. At 42 d of age, the serum ALB, IL-10, T-SOD, GSH-PX, T-AOC, and T-GSH were correlated with dietary Met levels. Finally, Met supplementation reduced the serum concentrations of ALP, IL-1ß, IgA, IgG, hydrogen peroxide, and hydroxyl radicals. Thus, the inclusion of 0.43% or 0.54% Met in the diet helps chicks achieve superior performance during the brooding period and subsequently. In conclusion, Met doses of 0.43 to 0.54% could enhance the growth performance, protein utilization efficiency, antioxidant capacity, and immune responses of layer chicks, and to promote more desirable subsequent development during the brooding period.


Assuntos
Antioxidantes , Metionina , Animais , Feminino , Metionina/farmacologia , Interleucina-10 , Galinhas , Racemetionina , Glutationa , Radical Hidroxila , Imunidade , Suplementos Nutricionais , Peso Corporal , Superóxido Dismutase
3.
Sci Total Environ ; 912: 169148, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092206

RESUMO

A shortage of feed protein resources restricts poultry productivity. Key strategies to alleviate this problem include improvements to the structure of the gut microbiota by the appropriate intake of high-quality protein, improvements to the comprehensive protein utilization rate, and reducing the consumption of protein raw materials. In addition, damage to the environment caused by nitrogen emissions needs to be reduced. The aim of the study was to evaluate the effects of dietary protein levels on laying performance, host metabolism, ovarian health, nitrogen emissions, and the gut microbial structure and function of laying hens. In total, 360 hens at the age of 38 weeks were randomly allotted four treatments. Each of the groups consisted of nine replicates, with 10 birds per replicate, used for 12 weeks of study. Dietary protein levels of the four groups were 13.85 %, 14.41 %, 15.63 %, and 16.30 %. Results revealed that, compared with the 13.85 % crude protein (CP) group, the 15.63 % CP group experienced significantly enhanced final body weight, average daily gain, egg production, and egg mass. Compared with the 16.30 % CP group, the other groups' serum concentrations of immunoglobulin G (IgG) and immunoglobulin M (IgM) were significantly reduced. Compared with the 16.30 % CP group, the 13.85 % and 15.63 % groups had increased CP utilization rates but reduced nitrogen emission rate, and daily per egg and per kilogram egg nitrogen emissions rose with increased dietary protein levels. Compared to the 13.85 % and 14.41 % CP groups, the 16.30 % CP group exhibited a significant increase in the expression of genes related to amino acids and carbohydrate metabolic pathways. According to the linear discriminant analysis effect size diagram, the predominant bacteria in the 15.63 % CP group (e.g., Subdoligranulum, and Ruminococcaceae_UCG-013) were significantly related to CP utilization. The results of this study emphasize that production performance is significantly reduced when protein levels are too low, whereas too high protein levels lead to gut microbiota imbalance and a reduction in the utilization efficiency of nutrients. Therefore, on the premise of ensuring the health of hens, the structure of the gut microbiota can be improved by appropriately reducing protein levels, which helps to balance the relationships among host health, productivity, resources, and the environment.


Assuntos
Galinhas , Dieta com Restrição de Proteínas , Animais , Feminino , Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Galinhas/metabolismo , Dieta/veterinária , Proteínas Alimentares/metabolismo , Suplementos Nutricionais/análise , Nitrogênio/metabolismo
4.
Front Nutr ; 9: 1005195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245518

RESUMO

Fat-soluble vitamin malabsorption may occur due to low dietary fat content, even in the presence of an adequate supply of fat-soluble vitamins. Bile acids (BAs) have been confirmed as emulsifiers to promote fat absorption in high-fat diets. However, there are no direct evidence of exogenous BAs promoting the utilization of fat-soluble vitamins associated with fat absorption in vitro and in vivo. Therefore, we chose laying hens as model animals, as their diet usually does not contain much fat, to expand the study of BAs. BAs were investigated in vitro for emulsification, simulated intestinal digestion, and release rate of fat-soluble vitamins. Subsequently, a total of 450 healthy 45-week-old Hy-Line Gray laying hens were chosen for an 84-day feeding trial. They were divided into five treatments, feeding diets supplemented with 0, 30, 60, 90, and 120 mg/kg BAs, respectively. No extra fat was added to the basic diet (crude fat was 3.23%). In vitro, BAs effectively emulsified the water-oil interface. Moreover, BAs promoted the hydrolysis of fat by lipase to release more fatty acids. Although BAs increased the release rates of vitamins A, D, and E from vegetable oils, BAs improved for the digestion of vitamin A more effectively. Dietary supplementation of 60 mg/kg BAs in laying hens markedly improved the laying performance. The total number of follicles in ovaries increased in 30 and 60 mg/kg BAs groups. Both the crude fat and total energy utilization rates of BAs groups were improved. Lipase and lipoprotein lipase activities were enhanced in the small intestine in 60, 90, and 120 mg/kg BAs groups. Furthermore, we observed an increase in vitamin A content in the liver and serum of laying hens in the 60, 90, and 120 mg/kg BAs groups. The serum IgA content in the 90 and 120 mg/kg BAs groups was significantly improved. A decrease in serum malondialdehyde levels and an increase in glutathione peroxidase activity were also observed in BAs groups. The present study concluded that BAs promoted the absorption of vitamin A by promoting the absorption of fat even under low-fat diets, thereupon improving the reproduction and health of model animals.

5.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009249

RESUMO

The development of single enantiomers with high efficiency and low toxic activity has become a hot spot for the development and application of drugs and active additives. The aim of the present study was to investigate the effectiveness of the application of α-lipoic acid with a different optical rotation to alleviate the inflammation response and oxidative stress induced by oxidized fish oil in laying hens. Sixty-four 124-week-old Peking Red laying hens were randomly allocated to four groups with eight replicates of two birds each. The normal group was fed basal diets supplemented with 1% fresh fish oil (FO), and the oxidative stress model group was constructed with diets supplemented with 1% oxidized fish oil (OFO). The two treatment groups were the S-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + S-LA) and the R-form of the α-lipoic acid model with 1% oxidized fish oil (OFO + R-LA) added at 100 mg/kg, respectively. Herein, these results were evaluated by the breeding performance, immunoglobulin, immune response, estrogen secretion, antioxidant factors of the serum and oviduct, and pathological observation of the uterus part of the oviduct. From the results, diets supplemented with oxidized fish oil can be relatively successful in constructing a model of inflammation and oxidative stress. The OFO group significantly increased the levels of the serum inflammatory factor (TNF-α, IL-1ß, IL-6, and IFN-γ) and the oxidative factor MDA and decreased the activity of the antioxidant enzyme (T-AOC, T-SOD, GSH-Px, GSH, and CAT) in the oviduct. The addition of both S-LA and R-LA significantly reduced the levels of serum inflammatory factors (TNF-α, IL-1ß, IL-6, and IFN-γ), increased the activity of antioxidant indexes (T-AOC, T-SOD, GSH-Px, GSH, and CAT), and decreased the MDA contents in the serum and oviduct. Meanwhile, the supplementation of S-LA and R-LA also mitigated the negative effects of the OFO on the immunoglobulins (IgA and IgM) and serum hormone levels (P and E2). In addition, it was worth noting that the R-LA was significantly more effective than the S-LA in some inflammatory (IL-1ß) and antioxidant indices (T-SOD, GSH, and CAT). Above all, both S-LA and R-LA can alleviate the inflammation and oxidative damage caused by oxidative stress in aged laying hens, and R-LA is more effective than S-LA. Thus, these findings will provide basic data for the potential development of α-lipoic acid as a chiral dietary additive for laying hens.

6.
Front Immunol ; 13: 928865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016957

RESUMO

The aim of this study was to evaluate the effects of different selenium (Se) sources on the immune responses and gut microbiota of laying hens challenged with Salmonella enteritidis (S. Enteritidis). A total of 240 45-week-old layers were randomly divided into eight groups with six replicates per group according to a 4 × 2 factorial design, including a blank diet without Se supplementation (CON group) and three diets with 0.3 mg/kg Se supplementation from sodium selenite (IS group), yeast Se (YS group), and selenium-enriched yeast culture (SYC group), respectively. After 8 weeks of feeding, half of them were orally challenged with 1.0 ml suspension of 109 colony-forming units per milliliter of S. Enteritidis daily for 3 days. The serum was collected on days 3, 7, and 14, and the cecum content was collected on day 14 after challenge. There was no significant difference in laying performance among the eight groups before challenge. The S. Enteritidis challenge significantly decreased the laying performance, egg quality, GSH-Px, IgG, and IgM and increased the ratio of feed and egg, malondialdehyde (MDA), Salmonella-specific antibody (SA) titers, IL-6, IL-2, IL-1ß, and INF-γ. However, SYC increased the level of GSH-Px and IgG and decreased IL-6, while YS decreased the level of IL-2 and IL-1ß. What is more, Se supplementation decreased the SA titers to varying degrees and reduced the inflammatory cell infiltration in the lamina propria caused by S. Enteritidis infection. In addition, the S. Enteritidis challenge disrupted the intestinal flora balance by reducing the abundance of the genera Clostridium innocuum, Lachnospiraceae, and Bifidobacterium and increasing the genera Butyricimonas and Brachyspira, while Se supplementation increased the gut microbial alpha diversity whether challenged or not. Under the S. Enteritidis challenge condition, the alteration of microbial composition by the administration of different Se sources mainly manifested as IS increased the relative abundance of the genera Lachnospiraceae and Christensenellaceae, YS increased the relative abundance of the genera Megamonas and Sphingomonas, and SYC increased the genera Fusobacterium and Lactococcus. The alteration of gut microbial composition had a close relationship with antioxidant or immune response. To summarize, different Se sources can improve the egg quality of layers challenged by S. Enteritidis that involves elevating the immunity level and regulating the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Galinhas , Feminino , Imunidade , Imunoglobulina G , Interleucina-2 , Interleucina-6 , Saccharomyces cerevisiae , Salmonella enteritidis , Selênio/farmacologia
7.
Front Vet Sci ; 9: 878107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548049

RESUMO

This study was conducted to investigate the effect of methionine (Met) deficiency in the rearing period on the growth performance, amino acids metabolism, intestinal development and gut microbiome of egg-laying chicks and the continuous effects on the performance, egg quality, and serum amino acids metabolism of the subsequent development process. Three hundred sixty one-day-old chicks were randomly divided into two groups and fed on a basal diet (NC group, Met 0.46%) and Met deficiency diet (Met- group, Met 0.27%). Each group included six replicates with 30 chicks per replicate. The trial lasted 6 weeks (0-6 weeks), both groups were fed the same basal diet which met the needs of Met during the observation period (7-24 weeks). Results showed that Met deficiency significantly decreased (P < 0.05) body weight (BW), average daily weight gain (ADG), average daily feed intake (ADFI) and tibia length (TL) compared to the NC group during the trial period (0-6 weeks). Also, Met deficiency dramatically increased (P < 0.05) feed conversion ratio (FCR) during the trial and observation period (7-24 weeks). In addition, during the observation period, the BW and ADG were decreased (P < 0.05) in the Met- group. Moreover, Met- group decreased (P < 0.05) villi height and villi height/crypt depth ratio in jejunum at 6th weeks. In addition, the concentrations of serum main free amino acids (FAA) in the Met- group were significantly increased (P < 0.05) at 6th weeks, while were decreased at 16th weeks. Based on the α-diversity and PCoA analysis in ß-diversity, there were no significant differences in the cecal microbial composition between NC and Met- groups. However, the LEfSe analysis revealed that differential genera were enriched in the NC or Met- groups. The Haugh unit, shell thickness and egg production in the Met- group were significantly lower (P < 0.05) than in the NC group. In conclusion, these results revealed that dietary supplementation of appropriate Met could substantially improve the growth performance, host amino acid metabolism and intestinal development and continuously improve the laying performance and thus boost the health of growing hens.

8.
Appl Bionics Biomech ; 2022: 2573058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528535

RESUMO

Swimmers must fully mobilize the muscles of the whole body during exercise, and it is necessary to study the protection of swimmers from muscle damage. Now, muscle damage is increasing year by year, and more athletes are affected. Therefore, studying the causes of muscle injuries and exploring more effective treatments have become important research topics in the field of sports medicine. This study is mainly based on deep learning to analyze the protective effect of branched-chain amino acids on swimming athletes' muscle injury. Due to the complex and changeable environment and the interference of unknown factors, a single sensor cannot meet the needs of obtaining information. Therefore, people have developed the technology of multisensor information fusion to obtain enough information. Multisensor data fusion technology can synthesize the information of each sensor and then obtain more comprehensive and accurate decision-making information. This study is mainly based on multisensor fusion and deep learning to analyze the impact of branched chain amino acids on Swimmers' muscle health information. Finally, two experiments were designed in this article. The first experimental result showed that the pain level of the experimental group who took BCAA supplements was 19% lower than that of the control group that did not take the BCAA supplement within three days after exercise. The results of the second experiment show the following: after exercise, the creatine kinase activity value of the experimental group taking BCAA supplement was 4.38 ± 1.45, and the creatine kinase activity value of the control group taking placebo was 5.42 ± 2.12. It proves that BBCA can protect muscle damage by reducing the activity of creatine kinase.

9.
Microbiome ; 9(1): 184, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493333

RESUMO

BACKGROUND: Alteration of the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Epigallocatechin-3-gallate (EGCG), a major bioactive constituent of green tea, is known to be beneficial in IBD alleviation. However, it is unclear whether the gut microbiota exerts an effect when EGCG attenuates IBD. RESULTS: We first explored the effect of oral or rectal EGCG delivery on the DSS-induced murine colitis. Our results revealed that anti-inflammatory effect and colonic barrier integrity were enhanced by oral, but not rectal, EGCG. We observed a distinct EGCG-mediated alteration in the gut microbiome by increasing Akkermansia abundance and butyrate production. Next, we demonstrated that the EGCG pre-supplementation induced similar beneficial outcomes to oral EGCG administration. Prophylactic EGCG attenuated colitis and significantly enriched short-chain fatty acids (SCFAs)-producing bacteria such as Akkermansia and SCFAs production in DSS-induced mice. To validate these discoveries, we performed fecal microbiota transplantation (FMT) and sterile fecal filtrate (SFF) to inoculate DSS-treated mice. Microbiota from EGCG-dosed mice alleviated the colitis over microbiota from control mice and SFF shown by superiorly anti-inflammatory effect and colonic barrier integrity, and also enriched bacteria such as Akkermansia and SCFAs. Collectively, the attenuation of colitis by oral EGCG suggests an intimate involvement of SCFAs-producing bacteria Akkermansia, and SCFAs, which was further demonstrated by prophylaxis and FMT. CONCLUSIONS: This study provides the first data indicating that oral EGCG ameliorated the colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into EGCG-mediated remission of IBD and EGCG as a potential modulator for gut microbiota to prevent and treat IBD. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Modelos Animais de Doenças , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Polifenóis/farmacologia , Chá
10.
Amino Acids ; 50(9): 1289-1299, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29961143

RESUMO

Maternal dietary supplementation with L-glutamine (Gln) has been considered as an option to improve fetal growth and to prevent the occurrence of intrauterine growth restriction (IUGR). This study investigated whether maternal Gln supplementation could improve fetal growth as well as the intestinal development during late pregnancy. Sixty pregnant Landrace × Large White multiparous sows were assigned to two groups, either the group fed the control diet or the group with the diet supplemented with 1% Gln from d 85 of gestation until farrowing. One normal body weight piglet and one IUGR piglet were obtained from six litters in each group. Reproductive performance, plasma concentrations of free amino acids and related metabolites as well as piglet growth and tissue indexes were determined. Maternal Gln supplementation during late gestation increased the average birth weight, while decreasing the within-litter variation of newborn piglets. The concentrations of Gln in plasma were lower in IUGR piglets than in normal piglets. Glutamine supplementation enhanced Gln concentrations in maternal and piglet plasma and the piglet jejunum, compared with the Control group. Supplementing Gln suppressed intestinal miR-29a levels, and increased the abundance of extracellular matrix (ECM) and tight junction (TJ) proteins, resulting in increased intestinal weight and improved morphologies of the piglets. Collectively, Gln supplementation to the sow's diet increased fetal growth, decreased the within-litter variation of newborn piglets, and alleviated the IUGR-induced intestinal impairment. These findings suggest the possibility of maternal glutamine supplementation in the prevention and treatment of IUGR in animal production and human medicine.


Assuntos
Retardo do Crescimento Fetal/tratamento farmacológico , Glutamina/administração & dosagem , Intestinos/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Suplementos Nutricionais/análise , Matriz Extracelular/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Troca Materno-Fetal , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA