Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Science ; 369(6502): 403-413, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703874

RESUMO

Excipients, considered "inactive ingredients," are a major component of formulated drugs and play key roles in their pharmacokinetics. Despite their pervasiveness, whether they are active on any targets has not been systematically explored. We computed the likelihood that approved excipients would bind to molecular targets. Testing in vitro revealed 25 excipient activities, ranging from low-nanomolar to high-micromolar concentration. Another 109 activities were identified by testing against clinical safety targets. In cellular models, five excipients had fingerprints predictive of system-level toxicity. Exposures of seven excipients were investigated, and in certain populations, two of these may reach levels of in vitro target potency, including brain and gut exposure of thimerosal and its major metabolite, which had dopamine D3 receptor dissociation constant K d values of 320 and 210 nM, respectively. Although most excipients deserve their status as inert, many approved excipients may directly modulate physiologically relevant targets.


Assuntos
Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Excipientes/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Excipientes/efeitos adversos , Humanos , Terapia de Alvo Molecular
3.
ACS Cent Sci ; 6(2): 213-225, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32123739

RESUMO

Subtype selectivity and functional bias are vital in current drug discovery for G protein-coupled receptors (GPCRs) as selective and biased ligands are expected to yield drug leads with optimal on-target benefits and minimal side-effects. However, structure-based design and medicinal chemistry exploration remain challenging in part because of highly conserved binding pockets within subfamilies. Herein, we present an affinity mass spectrometry approach for screening herbal extracts to identify active ligands of a GPCR, the 5-HT2C receptor. Using this method, we discovered a naturally occurring aporphine 1857 that displayed strong selectivity for activating 5-HT2C without activating the 5-HT2A or 5-HT2B receptors. Remarkably, this novel ligand exhibited exclusive bias toward G protein signaling for which key residues were identified, and it showed comparable in vivo efficacy for food intake suppression and weight loss as the antiobesity drug, lorcaserin. Our study establishes an efficient approach to discovering novel GPCR ligands by exploring the largely untapped chemical space of natural products.

4.
Elife ; 92020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118583

RESUMO

Melatonin receptors MT1 and MT2 are involved in synchronizing circadian rhythms and are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we performed large scale structure-based virtual screening for new ligand chemotypes using recently solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-micromolar potency at MT receptors, with compound 21 reaching EC50 of 0.36 nM. Six of these molecules displayed selectivity for MT2 over MT1. Moreover, two most potent agonists, including 21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MT2, while compound 37 was devoid of Gi signaling at MT1, implying biased signaling. This study validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for the structure-based discovery of selective agonists.


Assuntos
Descoberta de Drogas/métodos , Receptores de Melatonina/agonistas , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Relação Estrutura-Atividade
5.
Nature ; 579(7800): 609-614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040955

RESUMO

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Assuntos
Ritmo Circadiano/fisiologia , Ligantes , Receptores de Melatonina/agonistas , Receptores de Melatonina/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Feminino , Humanos , Luz , Masculino , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Receptores de Melatonina/deficiência , Receptores de Melatonina/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/genética
6.
Nature ; 569(7755): 284-288, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019306

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Sequência de Aminoácidos , Antidepressivos/química , Antidepressivos/metabolismo , Cristalização , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Simulação de Acoplamento Molecular , Mutação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor 5-HT2C de Serotonina/química , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Med Chem ; 61(15): 6830-6845, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990431

RESUMO

To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the µ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.


Assuntos
Simulação de Acoplamento Molecular , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Dopamina D2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ligantes , Conformação Proteica , Receptor 5-HT2A de Serotonina/química , Receptores de Dopamina D2/química , Especificidade por Substrato
8.
JCI Insight ; 2(22)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202454

RESUMO

W-18 (4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide) and W-15 (4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide) represent two emerging drugs of abuse chemically related to the potent opioid agonist fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylpropanamide). Here, we describe the comprehensive pharmacological profiles of W-18 and W-15, as examination of their structural features predicted that they might lack opioid activity. We found W-18 and W-15 to be without detectible activity at µ, δ, κ, and nociception opioid receptors in a variety of assays. We also tested W-18 and W-15 for activity as allosteric modulators at opioid receptors and found them devoid of significant positive or negative allosteric modulatory activity. Comprehensive profiling at essentially all the druggable GPCRs in the human genome using the PRESTO-Tango platform revealed no significant activity. Weak activity at the sigma receptors and the peripheral benzodiazepine receptor was found for W-18 (Ki = 271 nM). W-18 showed no activity in either the radiant heat tail-flick or the writhing assays and also did not induce classical opioid behaviors. W-18 is extensively metabolized, but its metabolites also lack opioid activity. Thus, although W-18 and W-15 have been suggested to be potent opioid agonists, our results reveal no significant activity at these or other known targets for psychoactive drugs.


Assuntos
Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Fentanila/química , Fentanila/farmacologia , Analgésicos Opioides , Animais , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Drogas Ilícitas , Camundongos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos
9.
Nat Chem Biol ; 13(5): 529-536, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288109

RESUMO

The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small-molecule MRGPRX2 agonists, selective nanomolar-potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found that many opioid compounds activated MRGPRX2, including (-)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan, and the prodynorphin-derived peptides dynorphin A, dynorphin B, and α- and ß-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573-a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases-along with an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line, inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573.


Assuntos
Simulação por Computador , Desenho de Fármacos , Sondas Moleculares/síntese química , Proteínas do Tecido Nervoso/agonistas , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropeptídeos/agonistas , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Simulação de Acoplamento Molecular , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Estrutura Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pirazóis/química , Pirimidinas/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Relação Estrutura-Atividade
10.
Mol Pharmacol ; 90(6): 726-737, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27754899

RESUMO

In this study, we identified two previously described kinase inhibitors-3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(3-methyl-1H-pyrazol-5-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (LY2784544) and 1H-benzimidazole-4-carboxylic acid, 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-(4-morpholinyl)- (GSK2636771)-as novel GPR39 agonists by unbiased small-molecule-based screening using a ß-arrestin recruitment screening approach (PRESTO-Tango). We characterized the signaling of LY2784544 and GSK2636771 and compared their signaling patterns with a previously described "GPR39-selective" agonist N-[3-chloro-4-[[[2-(methylamino)-6-(2-pyridinyl)-4- pyrimidinyl]amino]methyl]phenyl]methanesulfonamide (GPR39-C3) at both canonical and noncanonical signaling pathways. Unexpectedly, all three compounds displayed probe-dependent and pathway-dependent allosteric modulation by concentrations of zinc reported to be physiologic. LY2784544 and GS2636771 at GPR39 in the presence of zinc were generally as potent or more potent than their reported activities against kinases in whole-cell assays. These findings reveal an unexpected role of zinc as an allosteric potentiator of small-molecule-induced activation of GPR39 and expand the list of potential kinase off-targets to include understudied G protein-coupled receptors.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G/agonistas , Zinco/farmacologia , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Histidina/genética , Humanos , Hidrólise , Mutação/genética , Fosfatidilinositóis/metabolismo , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , beta-Arrestinas/metabolismo
11.
J Med Chem ; 59(2): 707-20, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700945

RESUMO

Here we employed structure-based ligand discovery techniques to explore a recently determined crystal structure of the 5-hydroxytryptamine 2B (5-HT2B) receptor. Ten compounds containing a novel chemical scaffold were identified; among them, seven molecules were active in cellular function assays with the most potent one exhibiting an IC50 value of 27.3 nM. We then systematically probed the binding characteristics of this scaffold by designing, synthesizing, and testing a series of structural modifications. The structure-activity relationship studies strongly support our predicted binding model. The binding profiling across a panel of 11 5-HT receptors indicated that these compounds are highly selective for the 5-HT2B receptor. Oral administration of compound 15 (30 mg/kg) produced significant attenuation of visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS). We expect this novel scaffold will serve as the foundation for the development of 5-HT2B antagonists for the treatment of IBS.


Assuntos
Síndrome do Intestino Irritável/tratamento farmacológico , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade
12.
J Med Chem ; 59(2): 578-91, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26704965

RESUMO

A series of novel compounds with two halogen substituents have been designed and synthesized to further optimize the 2-phenylcyclopropylmethylamine scaffold in the quest for drug-like 5-HT2C agonists. Compound (+)-22a was identified as a potent 5-HT2C receptor agonist, with good selectivity against the 5-HT2B and the 5-HT2A receptors. ADMET assays showed that compound (+)-22a possessed desirable properties in terms of its microsomal stability, and CYP and hERG inhibition, along with an excellent brain penetration profile. Evaluation of (+)-22a in animal models of schizophrenia-related behaviors revealed that it had a desirable activity profile, as it reduced d-amphetamine-stimulated hyperlocomotion in the open field test, it restored d-amphetamine-disrupted prepulse inhibition, it induced cognitive improvements in the novel object recognition memory test in NR1-KD animals, and it produced very little catalepsy relative to haloperidol. These data support the further development of (+)-22a as a drug candidate for the treatment of schizophrenia.


Assuntos
Cognição/efeitos dos fármacos , Hipercinese/psicologia , Inibição Pré-Pulso/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Encéfalo/metabolismo , Catalepsia/induzido quimicamente , Estimulantes do Sistema Nervoso Central , Dextroanfetamina , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Feminino , Humanos , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Cardiovasc Toxicol ; 16(1): 14-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25636206

RESUMO

The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel.


Assuntos
Alcaloides/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Tabernaemontana/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ibogaína/análogos & derivados , Ibogaína/síntese química , Ibogaína/química , Ibogaína/farmacocinética , Ibogaína/farmacologia , Ibogaína/toxicidade , Técnicas de Patch-Clamp , Extratos Vegetais/química , Relação Estrutura-Atividade
14.
PLoS One ; 8(3): e59334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527166

RESUMO

In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.


Assuntos
Cicloexanonas/metabolismo , Cicloexilaminas/metabolismo , Ketamina/análogos & derivados , Fenciclidina/análogos & derivados , Receptores de N-Metil-D-Aspartato/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ketamina/química , Ketamina/metabolismo , Ketamina/farmacologia , Estrutura Molecular , National Institute of Mental Health (U.S.) , Fenciclidina/química , Fenciclidina/metabolismo , Fenciclidina/farmacologia , Ensaio Radioligante , Receptores sigma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estados Unidos
15.
Eur J Pharmacol ; 700(1-3): 147-51, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23261499

RESUMO

Fourteen substances from the class of drugs sometimes known as "legal highs" were screened against a battery of human receptors in binding assays, and their potencies as inhibitors of monoamine uptake determined in functional in vitro assays. Thirteen of the test substances acted as inhibitors of monoamine uptake at submicromolar concentrations, including 9 potent inhibitors of the dopamine transporter (DAT), 12 potent inhibitors of the norepinephrine transporter (NET) and 4 potent inhibitors of the serotonin transporter (SERT). Seven compounds acted as submicromolar inhibitors of both DAT and NET, and three substances 1-(benzofuran-5-yl)propan-2-amine (5-APB), 1-naphthalen-2-yl-2-pyrrolidin-1-ylpentan-1-one hydrochloride ("naphyrone") and 1-naphthalen-1-yl-2-pyrrolidin-1-ylpentan-1-one hydrochloride ("1-naphyrone") were submicromolar inhibitors of all three monoamine transporters. There was a lack of correlation between results of functional uptake experiments and in vitro binding assays for the monoamine transporters. There was also no correlation between the human behavioral effects of the substances and the results of bindings assays for a range of receptor targets, although 1-(benzofuran-5-yl)propan-2-amine (5-APB), 1-(benzofuran-6-yl)propan-2-amine hydrochloride (6-APB) and 5-iodo-2,3-dihydro-1H-inden-2-amine hydrochloride (5-iodo-aminoindane) exhibited <100 nM affinities for 5HT(2B) and α(2C) receptors. Functional assays revealed that 5-APB and 6-APB were potent full agonists at 5HT(2B) receptors.


Assuntos
Psicotrópicos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Neuroquímica
16.
Neuropsychopharmacology ; 36(3): 638-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21048700

RESUMO

Clozapine, by virtue of its absence of extrapyramidal side effects and greater efficacy, revolutionized the treatment of schizophrenia, although the mechanisms underlying this exceptional activity remain controversial. Combining an unbiased cheminformatics and physical screening approach, we evaluated clozapine's activity at >2350 distinct molecular targets. Clozapine, and the closely related atypical antipsychotic drug olanzapine, interacted potently with a unique spectrum of molecular targets. This distinct pattern, which was not shared with the typical antipsychotic drug haloperidol, suggested that the serotonergic neuronal system was a key determinant of clozapine's actions. To test this hypothesis, we used pet1(-/-) mice, which are deficient in serotonergic presynaptic markers. We discovered that the antipsychotic-like properties of the atypical antipsychotic drugs clozapine and olanzapine were abolished in a pharmacological model that mimics NMDA-receptor hypofunction in pet1(-/-) mice, whereas haloperidol's efficacy was unaffected. These results show that clozapine's ability to normalize NMDA-receptor hypofunction, which is characteristic of schizophrenia, depends on an intact presynaptic serotonergic neuronal system.


Assuntos
Clozapina/farmacologia , Neurônios/citologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Anfetaminas/farmacologia , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Quinase do Ponto de Checagem 2 , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ketanserina/farmacocinética , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Atividade Motora/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Fenciclidina/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Ensaio Radioligante/métodos , Núcleos da Rafe/citologia , Receptor 5-HT1A de Serotonina/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Comportamento Estereotipado/efeitos dos fármacos , Trítio/farmacocinética , Triptofano Hidroxilase/metabolismo
17.
Int J Hematol ; 91(3): 401-12, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20213118

RESUMO

Iron chelators are effective at removing iron from the body in iron overload, but little is known about the handling of iron chelates by the kidney. We studied the transport of deferoxamine, deferasirox, and three hydroxypyridones, and their iron chelates, in polarized renal epithelial MDCK cells growing on Transwell inserts. Directional iron efflux was also studied in (59)Fe-loaded cells. The chelators were transported at comparable rates in the apical and basolateral directions and moved faster than their corresponding chelates, except for deferoxamine, which did not move from the basolateral to the apical side. In contrast, the chelates were transported faster in the apical-to-basolateral direction. More permeable chelators were more efficient at removing iron from iron-loaded cells compared with deferoxamine. Iron is preferentially removed from the basolateral side, and kinetic modeling suggests facilitated diffusion of chelates in some cases. Basolateral iron efflux is temperature-dependent and partially sensitive to ATP depletion. Polarized transport of chelates suggests the kidney may be involved in reabsorption of iron bound to chelators, with a temperature-sensitive facilitated removal of some iron complexes from the basolateral side. Further studies are warranted to determine if these processes may contribute to the observed nephrotoxicity of some iron chelators.


Assuntos
Benzoatos/farmacocinética , Desferroxamina/farmacocinética , Células Epiteliais/metabolismo , Sobrecarga de Ferro/metabolismo , Piridonas/farmacocinética , Triazóis/farmacocinética , Trifosfato de Adenosina/metabolismo , Animais , Benzoatos/química , Transporte Biológico/fisiologia , Linhagem Celular , Polaridade Celular/fisiologia , Deferasirox , Desferroxamina/química , Cães , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Exocitose/fisiologia , Ferro/farmacocinética , Quelantes de Ferro/química , Quelantes de Ferro/farmacocinética , Radioisótopos de Ferro , Rim/citologia , Modelos Biológicos , Piridonas/química , Sideróforos/química , Sideróforos/farmacocinética , Temperatura , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA