Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 117: 93-99, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29432911

RESUMO

Acute lung injury (ALI), a devastating form of respiratory infections, is characterized by increased edema, release of cytokines, weakened arterial oxygenation and infiltration of neutrophils and lymphocytes. The objective of the research envisaged was to reveal protective effects of tephrosin (TP) in ALI. In the present investigation, sepsis was triggered in rats by cecal ligation and puncture (CLP) method, and TP was administered intraperitonially. Five groups - Group A (control), Group B (Sham group) Group C (infected and untreated), and Group D and E (infected and treated with 25 and 50 mg/kg TP respectively) - of ten rats each, were used for the investigation. Evaluation parameters included measurement of arterial oxygenation, lung water content, protein determination, cytokine determination, neutrophil and lymphocyte count in the bronchoalveolar lavage fluid (BALF). As indicated by histopathological examination, the lung injury score was maximum in group C, but indicated reduction in group D and E. Intracellular adhesion molecule (ICAM)-1 and macrophage inflammatory protein-2 (MIP-2) are known to be important mediators responsible for ALI. Reduction in the ICAM-1 and MIP-2 expression was found to reduce after treatment with TP. In comparison to group D, group E reflected higher magnitude of ICAM-1 and MIP-2 suppression due to administration of higher TP dose. Compared to Group A and B, Group E indicated slightly higher expression of ICAM-1 and MIP-2. The research envisaged thus supports that TP attenuates ICAM-1 and MIP-2 expression in sepsis induced ALI rat model.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Quimiocina CXCL2/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Rotenona/análogos & derivados , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Ceco/lesões , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Contagem de Linfócitos , Masculino , Neutrófilos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Sprague-Dawley , Rotenona/administração & dosagem , Rotenona/farmacologia , Rotenona/uso terapêutico , Sepse/metabolismo
2.
Appl Microbiol Biotechnol ; 100(20): 8865-75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388769

RESUMO

Tea tree oil (TTO) is a yellow liquid extracted from Melaleuca alternifolia. Although the antimicrobial activity of TTO has been known for a long time, its specific antimicrobial effects and mechanism underlying these remain poorly characterized. The present study investigated the chemical composition of TTO and the dynamics and mechanism of its antimicrobial activities in two bacterial and two fungal strains. Gas chromatography-mass spectrometry analysis identified alkenes and alcohols as the main constituents of TTO. Terpinen-4-ol was the most abundant individual component, accounting for approximately 23 % of the TTO. Poisoned food technique assessment showed that the minimum inhibitory concentrations of TTO for bacterial strains (Escherichia coli and Staphylococcus aureus) and fungal strains (Candida albicans and Aspergillus niger) were 1.08 and 2.17 mg/mL, respectively. Antimicrobial dynamic curves showed that with increasing concentrations of TTO, the rate of cell killing and the duration of growth lag phase increased correspondingly. These data indicated that TTO produced concentration and time-dependent antimicrobial effects. The minimum bactericidal and fungicidal concentrations of TTO were 2.17, 4.34, and 4.34 against E. coli, S. aureus, and C. albicans, respectively. However, A. niger conidia were not completely eradicated, even after 3 days in the presence of 17.34 mg/mL TTO. Transmission electron microscopy images indicated that TTO penetrated the cell wall and cytoplasmic membrane of all the tested bacterial and fungal strains. TTO may also penetrate fungal organelle membrane. These findings indicated that TTO maybe exerts its antimicrobial effects by compromising the cell membrane, resulting in loss of the cytoplasm and organelle damage, which ultimate leads to cell death.


Assuntos
Anti-Infecciosos Locais/farmacologia , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Melaleuca/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Óleo de Melaleuca/química , Óleo de Melaleuca/isolamento & purificação , Fatores de Tempo
3.
PLoS One ; 9(11): e110983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25372706

RESUMO

Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Litsea/química , Óleos de Plantas/farmacologia , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos de Plantas/química
4.
Appl Microbiol Biotechnol ; 98(19): 8337-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25012787

RESUMO

Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries.


Assuntos
Compostos Alílicos/farmacologia , Antifúngicos/farmacologia , Alho/química , Penicillium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sulfetos/farmacologia , Compostos Alílicos/química , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Extratos Vegetais/química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA