Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(9): 2483-2493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37023852

RESUMO

New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including ß-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 µg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.


Assuntos
Alcaloides , Antineoplásicos , Artrite Experimental , Picrasma , Ratos , Animais , Picrasma/química , Estrutura Molecular , Artrite Experimental/tratamento farmacológico , Ácido Hialurônico , Alcaloides/química , Alcaloides/farmacologia , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/química , Lipídeos , Água
2.
ACS Appl Mater Interfaces ; 12(5): 5680-5694, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944660

RESUMO

Photodynamic therapy (PDT), a clinically approved cancer treatment, has faced many drawbacks that restricted its applications. For example, the hypoxia-induced elevated hypoxia-inducible factor-1α (HIF-1α) may desensitize tumors to PDT, and the high concentration of glutathione (GSH) in cancer cells can also neutralize the generated reactive oxygen species (ROS) during PDT, resulting in insufficient therapy. Moreover, extra probes for imaging-guided visualization therapy are always needed to track drug release or distribution, while it may decrease the drug loading of the drug delivery system (DDS). In the present study, we have designed and prepared a novel multifunctional combined therapy nanoparticle (ZnPc@Cur-S-OA NPs), in which curcumin (Cur) was not only used as a chemotherapy drug to achieve a combination therapy with PDT via downregulating HIF-1α and depleting GSH in B16F10 cells but also designed as a small-molecule ROS-triggered release prodrug to deliver the photosensitizer (PS). The red fluorescence of PS in the nanoparticles (NPs) can be used to track the NPs distribution, while the green fluorescence of Cur showed an "OFF-ON" activation, which enables additional imaging and real-time self-monitoring capabilities. These results proved that the prepared combined therapy NPs were more effective to inhibit the growth of B16F10 mouse melanoma tumor than was monotherapy without eliciting systemic toxicity either in vitro or in vivo, which indicated the combined therapy NPs as an effective way to improve the PDT efficacy via downregulation of HIF-1α and depletion of GSH. Thus, the strategy of using a multifunctional natural product as the stimuli-responsive carrier as well as the synergist with PDT for enhancing antitumor efficacy via multiple pathways may open an alternative avenue to fabricate new self-delivery combination therapy nanodrugs. Besides, the fluorescence emitted from the drug can be used for real-time self-monitoring of drug release and distribution, which has great potential in clinic to adjust the administration dose and irradiation time for different tumor types and stages for individual therapy.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/metabolismo , Portadores de Fármacos/química , Lasers , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Ethnopharmacol ; 237: 116-127, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30905787

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Periploca forrestii Schltr. (PF) is a traditional folk medicine in China that has been used widely for treating rheumatoid arthritis and traumatic injuries for a long history. Previously, we have roughly demonstrated that the ethanol extract of PF possessed in vitro wound healing potential, and more in depth research deserves to be conducted. AIM OF THE STUDY: The present study is aiming to fully evaluate the wound healing activity of PF in vitro and in vivo, clarify the mechanism of actions and the primary constituents responsible for wound healing. MATERIALS AND METHODS: The total extract of Periploca forrestii Schltr. (EPF) and its fraction (65% ethanol fraction, EPFE65) were obtained and evaluated on in vitro wound healing properties using mouse dermal fibroblasts (L929). Cell proliferation was tested by MTT and EdU assay, confirmed by cell cycle analysis, cell migration was evaluated by scratch and transwell assay and collagen production was also determined. Then EPFE65 was tested on in vivo wound healing activity using the excision rat models. The wounded skin of rats was topically applied with 0.1% EPFE65 once daily for 6 days with hydrogel as the carrier and the recombinant bovine basic fibroblast growth factor hydrogel (rbFGF) as positive control. Histopathology of the wounded skin on day 6 and day 12 was studied via hematoxylin and eosin (HE) staining. The expression of phosphorylation of Src, Akt and Erk1/2 was determined after the treatment with EPFE65 by western blot. In order to figure out whether the activation of Src, Akt and Erk1/2 was directly in conjunction with wound healing process promoted by EPFE65, cell proliferation and migration were tested in the presence of three inhibitors of Src, Akt and Erk1/2. Finally, the chemical composition of the effective fraction EPFE65 was analyzed by HPLC-Q-TOF-MS/MS. RESULTS: In vitro experiments suggested that EPFE65 was comparable to EPF that had potent effect on promoting L929 fibroblasts proliferation, migration and increasing collagen production. 0.1% EPFE65 hydrogel also exhibited significant effect on promoting wound healing in rats. The wound closure was significantly faster in EPFE65 and positive rbFGF group than that in negative control group since the third day post wounding (p < 0.05). Specifically, on day10-12, the wounds in EPFE65 and rbFGF group were almost healed as the wound areas diminished into 13.3-5.3% and 7.7-4.0%, while the wound in control group was still apparent with 36.8-22.1% wound area. HE staining demonstrated that EPFE65 and rbFGF group could advance re-epithelialization in the early days and promote the transition of granulation tissue into complete dermis tissue with more skin appendages resembling those of normal skin in the last days. Western blot results suggested that the active fraction EPFE65 could increase the phosphorylation of Src, Akt and Erk1/2 in both dose-dependent and time-dependent manner, whereas Akt and Erk1/2 phosphorylation caused by EPFE65 could be abolished by Src inhibition. Inhibition experiments confirmed that the activation of Src, Akt and Erk1/2 were involved in cell proliferation and migration. All of these demonstrated that EPFE65 promoted wound healing at least in part via Src mediated Mek/Erk and PI3K/Akt signaling pathways. Analysis of chemical composition of EPFE65 revealed that cardiac glycosides were major components in EPFE65, among which periplocin showed effectiveness on promoting fibroblasts proliferation indicating that cardiac glycosides in EPFE65 maybe the active compounds responsible for wound healing. CONCLUSION: The present study confirmed that EPFE65, ethanol extract of Periploca forrestii Schltr. could accelerate wound healing in vitro and in vivo through Src meditated Mek/Erk and PI3K/Akt signaling pathways.


Assuntos
Periploca , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Quinases/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Masculino , Camundongos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/patologia
4.
J Ethnopharmacol ; 224: 230-241, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29680302

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Periploca forrestii Schltr. is a popular folk medicine in china, commonly prescribed for the treatment of rheumatoid arthritis and wounds. The present research aimed to evaluate the effects of HLG on wound healing and reveal the potential active constituents. MATERIALS AND METHODS: The wound healing activity was assessed by proliferation of fibroblast, migration and collagen production using L929 cells. A reliable HPLC-Q-TOF-MS/MS method was constructed for the systematic identification and characterization of main components in HLG. For further clarifying the potential active ingredients responsible for wound healing, total extract was separated by D101 macroporous resin. The fraction with strongest potency on wound healing was screened out by comparing with total extract. Finally, a new quantitative method was developed for determination of four typical cardiac glycosides in HLG by LC-MS. RESULTS: The results showed that the total extract significantly promoted proliferation of fibroblast L929 up to 168% at 50 µg/ml. It also notably enhanced L929 migration on day 2 up to 56% and stimulated collagen release (96.1 µg/ml) at 50 µg/ml. A total of 38 compounds were identified or tentatively characterized by HPLC-Q-TOF-MS/MS based on reference substances or literatures. The separation by D101 macroporous adsorption resin led to the identification of 65 ethanol eluate as the most effective fraction. The data suggested that it could markedly promote L929 growth (174% of control), accelerate wound contraction (63% on day 2) and stimulate collagen generation (103.7 µg/ml) at 50 µg/ml, all of which were comparable to those of total extract. Interestingly, the HPLC-Q-TOF-MS/MS analysis revealed that the 65 ethanol fraction was mainly composed of cardiac glycosides. Finally, the new quantitative method was successfully utilized for detection of four typical cardiac glycosides in HLG, showing good performance in terms of analytical methodology. CONCLUSION: The present study identified the cardiac glycosides as potential active constituents associated with wound healing and might afford a chemical foundation for preparation development of crude drug and quality evaluation of relevant products.


Assuntos
Periploca , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Camundongos , Caules de Planta/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA