Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116072, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342011

RESUMO

Triptolide (TP) is the major bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., a traditional Chinese medicinal plant categorized within the Tripterygium genus of the Celastraceae family. It is recognized for its therapeutic potential in addressing a multitude of diseases. Nonetheless, TP is known to exhibit multi-organ toxicity, notably hepatotoxicity, which poses a significant concern for the well-being of patients undergoing treatment. The precise mechanisms responsible for TP-induced hepatotoxicity remain unresolved. In our previous investigation, it was determined that TP induces heightened hepatic responsiveness to exogenous lipopolysaccharide (LPS). Additionally, natural killer (NK) cells were identified as a crucial effector responsible for mediating hepatocellular damage in this context. However, associated activating receptors and the underlying mechanisms governing NK cell represented innate lymphoid cell (ILC) activation remained subjects of inquiry and were not yet investigated. Herein, activating receptor Killer cell lectin like receptor K1 (NKG2D) of group 1 ILCs was specifically upregulated in TP- and LPS-induced acute liver failure (ALF), and in vivo blockade of NKG2D significantly reduced group 1 ILC mediated cytotoxicity and mitigated TP- and LPS-induced ALF. NKG2D ligand UL16-binding protein-like transcript 1 (MULT-1) was found upregulated in liver resident macrophages (LRMs) after TP administration, and LRMs did exhibit NK cell activating effect. Furthermore, M1 polarization of LRMs cells was observed, along with an elevation in intracellular tumor necrosis factor (TNF)-α levels. In vivo neutralization of TNF-α significantly alleviated TP- and LPS-induced ALF. In conclusion, the collaborative role of group 1 ILCs and LRMs in mediating hepatotoxicity was confirmed in TP- and LPS-induced ALF. TP-induced MULT-1 expression in LRMs was the crucial mechanism in the activation of group 1 ILCs via MULT-1-NKG2D signal upon LPS stimulation, emphasizing the importance of infection control after TP administration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Fenantrenos , Animais , Humanos , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Lipopolissacarídeos/toxicidade , Imunidade Inata , Fenantrenos/toxicidade , Compostos de Epóxi/toxicidade , Células Matadoras Naturais , Macrófagos , Doença Hepática Induzida por Substâncias e Drogas/etiologia
2.
Phytomedicine ; 109: 154621, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610139

RESUMO

BACKGROUND: Tripterygium wilfordii Hook. F (TWHF) is used as a traditional Chinese medicine, called thunder god vine, based on its efficacy for treating inflammatory diseases. However, its hepatotoxicity has limited its clinical application. Triptolide (TP) is the major active and toxic component of TWHF. Previous studies reported that a toxic pretreatment dose of TP leads to hepatic intolerance to exogenous lipopolysaccharide (LPS) stimulation, and to acute liver failure, in mice, but the immune mechanisms of TP-sensitised hepatocytes and the TP-induced excessive immune response to LPS stimulation are unknown. PURPOSE: To identify both the key immune cell population and mechanism involved in TP-induced hepatic intolerance of exogenous LPS. STUDY DESIGN: In vitro and in vivo experiments were conducted to investigate the inhibitory signal of natural killer (NK) cells maintained in hepatocytes, and the ability of TP to impair that signal. METHODS: Flow cytometry was performed to determine NK cell activity and hepatocyte histocompatibility complex (MHC) class I molecules expression; the severity of liver injury was determined based on blood chemistry values, and drug- or cell-mediated hepatocellular damage, by measuring lactate dehydrogenase (LDH) release. In vivo H-2Kb transduction was carried out using an adeno-associated viral vector. RESULTS: Interferon (IFN)-γ-mediated necroptosis occurred in C57BL/6N mice treated with 500 µg TP/kg and 0.1 mg LPS/kg to induce fulminant hepatitis. Primary hepatocytes pretreated with TP were more prone to necroptosis when exposed to recombinant murine IFN-γ. In mice administered TP and LPS, the intracellular IFN-γ levels of NK cells increased significantly. Subsequent study confirmed that NK cells were activated and resulted in potent hepatocellular toxicity. In vivo and in vitro TP administration significantly inhibited MHC class I molecules in murine hepatocytes. An in vitro analysis demonstrated the susceptibility of TP-pretreated hepatocytes to NK-cell-mediated cytotoxicity, an effect that was significantly attenuated by the induction of hepatocyte MHC-I molecules by IFN-α. In vivo induction or overexpression of hepatocyte MHC-I also protected mouse liver against TP and LPS-induced injury. CONCLUSION: The TP-induced inhibition of hepatocyte MHC-I molecules expression leads to hepatic intolerance to exogenous LPS and NK-cell mediated cytotoxicity against self-hepatocytes. These findings shed light on the toxicity of traditional Chinese medicines administered for their immunomodulatory effects.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Fenantrenos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Lipopolissacarídeos , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos C57BL , Fenantrenos/farmacologia , Diterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA