Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 124: 109528, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979712

RESUMO

Cerebral ischemia-reperfusion (I/R) injury is notably linked with folic acid (FA) deficiency. The aim of our investigation was to explore the effects and underlying mechanisms by which FA mitigates I/R, specifically through regulating the GCPII transcriptional adaptive program. Initially, we discovered that following cerebral I/R, levels of FA, methionine synthase (MTR), and methylenetetrahydrofolate reductase (MTHFR) were decreased, while GCPII expression was elevated. Secondly, administering FA could mitigate cognitive impairment and neuronal damage induced by I/R. Thirdly, the mechanism of FA supplementation involved suppressing the transcriptional factor Sp1, subsequently inhibiting GCPII transcription, reducing Glu content, obstructing cellular ferroptosis, and alleviating cerebral I/R injury. In summary, our data demonstrate that FA affords protection against cerebral I/R injury by inhibiting the GCPII transcriptional adaptive response. These findings unveil that targeting GCPII might be a viable therapeutic strategy for cerebral I/R.


Assuntos
Isquemia Encefálica , Ferroptose , Deficiência de Ácido Fólico , Traumatismo por Reperfusão , Humanos , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Hidrolases , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Traumatismo por Reperfusão/prevenção & controle , Reperfusão
2.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 480-492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014877

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.


Assuntos
Proteínas Quinases Ativadas por AMP , Cyprinidae , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação do Apetite , Carboidratos , Cyprinidae/metabolismo , Dieta/veterinária , Dieta Hiperlipídica , Hipotálamo/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
J Mater Chem B ; 8(26): 5765-5775, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519722

RESUMO

Atherosclerosis can lead to thrombosis, blood supply disorders, and even serious consequences such as lumen occlusion or wall rupture and bleeding, so it is urgent to develop an effective comprehensive therapy. Here, a novel kind of drug-coated balloon, where drug-loaded porous nanomotors with autonomous motion ability are used as the coating of the balloon, is reported. The drug-loaded porous nanomotors based on Janus aminated mesoporous silica (JAMS) that was obtained by asymmetric modification of platinum (Pt) nanoparticles are prepared and characterized. The platelet membrane is used to wrap the nanomotors to reduce the leakage of drugs before reaching the plaque. The motion ability of the nanomotor under the irradiation of near-infrared light, the sustained release behavior and effect of the loaded drugs (anti-proliferative drug paclitaxel and the anti-vascular cell adhesion molecule-1 antibody) are investigated in detail. The biomimetic effect and encapsulation effect on drug loading of the platelet membrane, and the elimination of inflammatory macrophages under the photothermal effect produced by Pt are also characterized. The results indicate that the drug-loaded porous nanomotors proposed for drug balloon coating in this work can penetrate into the plaque and enhance the drug retention efficiency, realizing short-term photothermal elimination of inflammatory macrophages and long-term anti-proliferation effect of the drug, providing a possible choice for drug balloon coating with high efficiency in the treatment of atherosclerosis.


Assuntos
Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Materiais Revestidos Biocompatíveis/uso terapêutico , Nanopartículas/química , Paclitaxel/uso terapêutico , Fototerapia , Animais , Anticorpos/química , Aterosclerose/induzido quimicamente , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Terapia Combinada , Dieta Hiperlipídica/efeitos adversos , Humanos , Camundongos , Paclitaxel/química , Tamanho da Partícula , Platina/química , Porosidade , Células RAW 264.7 , Coelhos , Dióxido de Silício/química , Propriedades de Superfície
4.
Fish Shellfish Immunol ; 98: 10-18, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911287

RESUMO

Two in vitro trials were conducted to identify a peptide with antioxidant activity and immunoenhancement from cottonseed meal protein hydrolysate (CPH) for fish. Primary hepatocytes of Megalobrama amblycephala were treated with CPH. In experiment 1, CPH significantly increased aspartate aminotransferase (GOT), alanine aminotransferase (GPT), total superoxide dismutase (t-SOD), catalase (CAT), and lysozyme activities, as well as up-regulated SOD, CAT, antimicrobial peptides 1 (Leap 1) and Leap 2 mRNA levels (p < 0.05). However, CPH significantly down-regulated the expression of NADPH oxidase-2 (NOX2), Kelch-like-ECH-associated protein 1 (Keap1), NF-E2-related factor 2 (Nrf2) and BTB and CNC homolog 1 (Bach1) mRNA (p < 0.05) in fish hepatocytes. Experiment 2 showed that the molecular mass of CPH was distributed mainly in the 700-1024 Da range. Peptide 1 (P1) and P2 significantly decreased GOT and GPT activities in conditioned medium (p < 0.05); however, P4 and P6 did not affect GOT and GPT activities (p > 0.05). Furthermore, P4 significantly increased hepatocyte GOT, GPT, t-SOD, CAT levels and lysozyme activities (p < 0.05), up-regulated SOD, CAT, Leap1 and Leap2 mRNA expression levels, and down-regulated the expression of Nrf2 and NOX2 mRNA (p < 0.05) in fish hepatocytes. The above results indicated that CPH and P4 enhanced hepatocyte metabolism, as well as improved antioxidant capacities and innate immunity of blunt snout bream hepatocytes.


Assuntos
Antioxidantes/metabolismo , Cyprinidae/imunologia , Imunidade Inata/efeitos dos fármacos , Hidrolisados de Proteína/metabolismo , Ração Animal/análise , Animais , Óleo de Sementes de Algodão/química , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Hidrolisados de Proteína/administração & dosagem , Distribuição Aleatória
5.
Fish Shellfish Immunol ; 90: 264-273, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054356

RESUMO

We investigated the effects of icariin (ICA) on growth performance, antioxidant capacity and non-specific immunity in Chinese mitten crab (Eriocheir sinensis). A total of 200 healthy crabs (average weight: 33.58 ±â€¯0.05 g) were randomly assigned to four treatments with five replicates, each with ten individuals per pool. There were four dietary treatments: the control group (fed with the basal diet), the ICA 50 group, the ICA100 group, and the ICA 200 group (fed with the basal diet supplemented with 50, 100, and 200 mg/kg ICA, respectively). These diets were provided for 8 weeks. Results indicated that ICA100 crabs had higher weight gain (WG), specific growth rate (SGR) and survival rate (SR) than the controls. Protein carbonyl content (PCC) and malondialdehyde (MDA) concentrations in the haemolymph and hepatopancreas of ICA100 crabs were significantly lower than in the control group, while the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly higher. The activities of PO, LZM, ACP and AKP were significantly enhanced with ICA supplementation at 50 and 100 mg/kg, yet decreased subsequently at 200 mg/kg. Furthermore, supplementation of 100 mg/kg ICA up-regulated the mRNA expression of prophenoloxidase (proPO), catalase (CAT), mitochondrial manganese superoxide dismutase (mtMnSOD), thioredoxin-1 (Trx1) and peroxiredoxin 6 (Prx6), while the mRNA expression of toll like receptors (TLRs), NF-κB-like transcription factor Relish and lipopolysaccharide-induced TNF-α factor (LITAF) were down-regulated in the hepatopancreas (P < 0.05). These findings indicate that dietary ICA supplementation at an optimum dose of 100 mg/kg may be effective in improving growth performance, antioxidant capability and non-specific immunity of Chinese mitten crab.


Assuntos
Adjuvantes Imunológicos/metabolismo , Braquiúros/imunologia , Flavonoides/metabolismo , Imunidade Inata/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Antioxidantes , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Distribuição Aleatória
6.
Chemosphere ; 212: 376-384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30149310

RESUMO

Tris (2-butoxyethyl) phosphate (TBOEP), as one of the most widely used organophosphate flame retardants (OPFRs), is applied in nearly all manufactured items and materials. It has been reported that TBOEP could cause developmental impairments and disrupt the endocrine regulation of fish growth during acute toxic experiments. However, concentrations to which fish were exposed in these studies were greater than environmentally relevant concentrations ever reported. This study examined effects on growth associated with exposure of zebrafish to 0, 0.1, 1 and 10 µg/L TBOEP during 20-90 days post fertilization (dpf). The changes in growth indicators and bioaccumulation of TBOEP were examined along with the transcription of related genes in the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. The average body contents of TBOEP were higher in females than in males in all the exposure groups. Exposure to environmentally relevant concentrations of TBOEP significantly decreased body length and body mass and down-regulated expression of several genes involved in the GH/IGF and HPT axes. Exposure to TBOEP decreased plasma thyroxine (T4) content accompanied by decreased mRNA level of thyrotropin ß-subunit (tshß) in females at 60 dpf, but no effects were observed at 90 dpf. These results suggested that bioaccumulation of TBOEP and down-regulation of genes involved in the GH/IGF axis might be responsible for the observed growth inhibition in zebrafish exposed to TBOEP.


Assuntos
Sistema Endócrino/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Hormônio do Crescimento Humano/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA