Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 189: 455-463, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34419551

RESUMO

Salvia miltiorrhiza Bunge, belonging to Lamiaceae family, is one of the most important Chinese medicinal herbs. The dried roots, also called Danshen in Chinese, are usually used in the formula of Chinese traditional medicine due to the bioactive constituents known as phenolic acids and tanshinones, which are a group of abietane nor-diterpenoid quinone natural products. Cytochrome P450 enzymes (CYPs) usually play crucial roles in terpenoids synthesis, especially in hydroxylation processes. Up to now, several important P450 enzymes, such as CYP76AH1, CYP76AH3, CYP76AK1, CYP71D373, and CYP71D375, have been functionally characterized in the tanshinones biosynthetic pathway. Nevertheless, the tanshinones biosynthesis is a so complex network that more P450 enzymes should be identified and characterized. Here, we report two novel P450 enzymes CYP76AK2 and CYP76AK3 that are involved in tanshinones biosynthetic pathway. These two P450 enzymes were highly homologous to previously reported CYP76AK1 and showed the same expression profile as CYP76AK1. Also, CYP76AK2 and CYP76AK3 could be stimulated by MeJA and SA, resulting in increased expression. We used a triple-target CRISPR/Cas9 system to generate targeted mutagenesis of CYP76AK2 and CYP76AK3 in S. miltiorrhiza. The content of five major tanshinones was significantly reduced in both cyp76ak2 and cyp76ak3 mutants, indicating that the two enzymes might be involved in the biosynthesis of tanshinones. This study would provide a foundation for the catalytic function identification of CYP76AK2 and CYP76AK3, and further enrich the understanding of the network of tanshinones secondary metabolism synthesis as well.


Assuntos
Abietanos/biossíntese , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Mutagênese/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimologia , Salvia miltiorrhiza/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cromossomos de Plantas/genética , Sequência Conservada , Sistema Enzimático do Citocromo P-450/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Vetores Genéticos/metabolismo , Mutação/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química
2.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487420

RESUMO

Jasmonic acid (JA) carboxyl methyltransferase (JMT), a key enzyme in jasmonate-regulated plant responses, may be involved in plant defense and development by methylating JA to MeJA, thus influencing the concentrations of MeJA in plant. In this study, we isolated the JMT gene from Salvia miltiorrhiza, an important medicinal plant widely used to treat cardiovascular disease. We present a genetic manipulation strategy to enhance the production of phenolic acids by overexpresion SmJMT in S. miltiorrhiza. Global transcriptomic analysis using RNA sequencing showed that the expression levels of genes involved in the biosynthesis pathway of phenolic acids and MeJA were upregulated in the overexpression lines. In addition, the levels of endogenous MeJA, and the accumulation of rosmarinic acid (RA) and salvianolic acid (Sal B), as well as the concentrations of total phenolics and total flavonoids in transgenic lines, were significantly elevated compared with the untransformed control. Our results demonstrate that overexpression of SmJMT promotes the production of phenolic acids through simultaneously activating genes encoding key enzymes involved in the biosynthesis pathway of phenolic acids and enhancing the endogenous MeJA levels in S. miltiorrhiza.


Assuntos
Hidroxibenzoatos/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo , Cinamatos/metabolismo , Ciclopentanos/metabolismo , Depsídeos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metiltransferases/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Salvia miltiorrhiza/genética , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA