Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Mitofagia , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Mitofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Camundongos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Comprimidos , Linhagem Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Fitoterapia ; 174: 105837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286314

RESUMO

Mikania micrantha is a perennial liana of the genus Mikania of the Asteraceae family. It is a commonly used medicine in South America for treating fever, malaria, dysentery, snake bites, etc. Because of its strong adaptability and ability to inhibit the growth of its associated plants, Mikania micrantha is considered an invasive species in China and is known as a plant killer. Preliminary studies have shown that Mikania micrantha has an antipruritic effect, but the antipruritic active substance is not yet clear. In this study, a 4-aminopyridine-induced itching model in mice was used to determine the antipruritic effects of petroleum ether, ethyl acetate, ethanol extraction site, and Mikania micrantha volatile oil. GC-MS was used to analyze the components of the antipruritic fractions, combined with mice itch-causing models to study the antipruritic effects of ß-caryophyllene and humulene. The safety of ß-caryophyllene was preliminarily evaluated through the acute toxicity test of mice skin. The ethyl acetate and volatile oil of Mikania micrantha have apparent antipruritic effects. Humulene and ß-caryophyllene have a quantitative-effective relationship to inhibit itching in mice. The acute toxicity test of mouse skin showed that ß-caryophyllene has no acute toxicity. This study indicated that the main antipruritic active ingredients of Mikania micrantha are ß-caryophyllene and humulene.


Assuntos
Acetatos , Mikania , Sesquiterpenos Monocíclicos , Óleos Voláteis , Sesquiterpenos Policíclicos , Animais , Camundongos , Antipruriginosos/farmacologia , Estrutura Molecular , Óleos Voláteis/farmacologia , Prurido
3.
Mol Med ; 30(1): 10, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216878

RESUMO

BACKGROUND: Increased oxidative stress contributes to enhanced osteoclastogenesis and age-related bone loss. Melatonin (MT) is an endogenous antioxidant and declines with aging. However, it was unclear whether the decline of MT was involved in the enhanced osteoclastogenesis during the aging process. METHODS: The plasma level of MT, oxidative stress status, bone mass, the number of bone marrow-derived monocytes (BMMs) and its osteoclastogenesis were analyzed in young (3-month old) and old (18-month old) mice (n = 6 per group). In vitro, BMMs isolated from aged mice were treated with or without MT, followed by detecting the change of osteoclastogenesis and intracellular reactive oxygen species (ROS) level. Furthermore, old mice were treated with MT for 2 months to investigate the therapeutic effect. RESULTS: The plasma level of MT was markedly lower in aged mice compared with young mice. Age-related decline in MT was accompanied by enhanced oxidative stress, osteoclastogenic potential and bone loss. MT intervention significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, decreased intracellular ROS and enhanced antioxidant capacity of BMMs from aged mice. MT supplementation significantly attenuated oxidative stress, osteoclastogenesis, bone loss and deterioration of bone microstructure in aged mice. CONCLUSIONS: These results suggest that age-related decline of MT enhanced osteoclastogenesis via disruption of redox homeostasis. MT may serve as a key regulator in osteoclastogenesis and bone homeostasis, thereby highlighting its potential as a preventive agent for age-related bone loss.


Assuntos
Melatonina , Osteoporose , Animais , Camundongos , Osteogênese , Osteoclastos/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Oxirredução , Homeostase , Diferenciação Celular , NF-kappa B/metabolismo
4.
Phytother Res ; 37(3): 834-847, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36349468

RESUMO

Advanced glycation end products (AGEs) have been identified to transduce fibrogenic signals via inducing the activation of their receptor (RAGE)-mediated pathway. Recently, disrupting AGE-RAGE interaction has become a promising therapeutic strategy for chronic heart failure (CHF). Endothelial-to-mesenchymal transition (EndMT) is close to the cardiac fibrosis pathological process. Our previous studies have demonstrated that knockout RAGE suppressed the autophagy-mediated EndMT, and thus alleviated cardiac fibrosis. Plantamajoside (PMS) is the major bioactive compound of Plantago Asiatica, and its activity of anti-fibrosis has been documented in many reports. However, its effect on CHF and the underlying mechanism remains elusive. Thus, we tried to elucidate the protective role of PMS in CHF from the viewpoint of the AGEs/RAGE/autophagy/EndMT axis. Herein, PMS was found to attenuate cardiac fibrosis and dysfunction, suppress EndMT, reduce autophagy levels and serum levels of AGEs, yet did not affect the expression of RAGE in CHF mice. Mechanically, PMS possibly binds to the V-domain of RAGE, which is similar to the interaction between AGEs and RAGE. Importantly, this competitive binding disturbed AGEs-induced the RAGE-autophagy-EndMT pathway in vitro. Collectively, our results indicated that PMS might exert an anti-cardiac fibrosis effect by specifically binding RAGE to suppress the AGEs-activated RAGE/autophagy/EndMT pathway.


Assuntos
Catecóis , Produtos Finais de Glicação Avançada , Animais , Camundongos , Autofagia , Catecóis/farmacologia , Fibrose , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Transição Epitelial-Mesenquimal
5.
Phytomedicine ; 107: 154412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191549

RESUMO

BACKGROUND: Cardiovascular diseases are the major cause of mortality in patients with advanced chronic kidney diseases. The predominant abnormality observed among this population is cardiac dysfunction secondary to myocardial remodelings, such as hypertrophy and fibrosis, emphasizing the need to develop potent therapies that maintain cardiac function in patients with end-stage renal disease. AIMS: To identify potential compounds and their targets as treatments for cardiorenal syndrome type 4 (CRS) using molecular phenotyping and in vivo/in vitro experiments. METHODS: Gene expression was assessed using bioinformatics and verified in animal experiments using 5/6 nephrectomized mice (NPM). Based on this information, a molecular phenotyping strategy was pursued to screen potential compounds. Picrosirius red staining, wheat germ agglutinin staining, Echocardiography, immunofluorescence staining, and real-time quantitative PCR (qPCR) were utilized to evaluate the effects of compounds on CRS in vivo. Furthermore, qPCR, immunofluorescence staining and flow cytometry were applied to assess the effects of these compounds on macrophages/cardiac fibroblasts/cardiomyocytes. RNA-Seq analysis was performed to locate the targets of the selected compounds. Western blotting was performed to validate the targets and mechanisms. The reversibility of these effects was tested by overexpressing Osteopontin (OPN). RESULTS: OPN expression increased more remarkably in individuals with uremia-induced cardiac dysfunction than in other cardiomyopathies. Lobetyolin (LBT) was identified in the compound screen, and it improved cardiac dysfunction and suppressed remodeling in NPM mice. Additionally, OPN modulated the effect of LBT on cardiac dysfunction in vivo and in vitro. Further experiments revealed that LBT suppressed OPN expression via the phosphorylation of c-Jun N-terminal protein kinase (JNK) signaling pathway. CONCLUSIONS: LBT improved CRS by inhibiting OPN expression through the JNK pathway. This study is the first to describe a cardioprotective effect of LBT and provides new insights into CRS drug discovery.


Assuntos
Cardiopatias , Osteopontina , Animais , Fibrose , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/metabolismo , Poli-Inos , Proteínas Quinases , Aglutininas do Germe de Trigo
6.
J Ethnopharmacol ; 298: 115579, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963415

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiorenal syndrome type 4 (CRS type 4), with high rates of morbidity and mortality, has become a social and economic problem worldwide over the last few decades. Zhen-Wu decoction, a traditional medicine used in East Asia, has been widely used in the treatment of cardiovascular disease and kidney disease, and has shown potential therapeutic effects for the clinical treatment of CRS type 4. However, the underlying mechanism has not been extensively explored. AIM OF THE STUDY: The purpose of this study was to investigate the effect and underlying mechanism of Zhen-Wu decoction on uremic cardiomyopathy, offering a potential target for clinical treatment of CRS type 4. MATERIALS AND METHODS: Five/six nephrectomized mice were utilized for experiments in vivo. The cardioprotective effects of Zhen-Wu decoction were evaluated by echocardiography and tissue staining. RNA-Seq data were used to investigate the potential pharmacological mechanism. The prediction of targets and active components was based on our previous strategy. Subsequently, the protective effect of the selected compound was verified in experiments in vitro. RESULTS: Zhen-Wu decoction alleviated cardiac dysfunction and endothelial injury in 5/6 nephrectomized mice, and the mechanism may involve the inflammatory process and oxidative stress. The activation of the Nrf2 signaling pathway was predicted to be a potential target of Zhen-Wu decoction in protecting endothelial cells. Through our machine learning strategy, we found that lactiflorin as an ingredient in Zhen-Wu decoction, alleviates IS-induced endothelial cell injury by blocking Keap1 and activating Nrf2. CONCLUSIONS: The present study demonstrated that Zhen-Wu decoction and lactiflorin could protect endothelial cells against oxidative stress in mice after nephrectomy by activating the Nrf2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Uremia , Animais , Simulação por Computador , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais/metabolismo , Glicosídeos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Monoterpenos , Fator 2 Relacionado a NF-E2/metabolismo , Uremia/tratamento farmacológico
7.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3681-3685, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850823

RESUMO

Application experience in humans, a summary of the clinical practice of traditional Chinese medicine(TCM), serves as an important data source for evaluating the safety, effectiveness, and clinical value of drugs in the development of new Chinese medicine. The collected data serving as the evaluation evidence through statistical analysis are critical to the research on the application experience in humans. This article summarized and analyzed the data characteristics and statistical methodology of application experience of Chinese medicine in humans, and concluded the data types, outcome evaluation, bias evaluation, confounding factors, and missing values. Furthermore, the article emphasized the importance of data analysis of application experience of Chinese medicine in humans for TCM evidence and put forward the current difficulties, such as low data quality and large internal bias, lack of individualized data processing methods, and lack of methods for "disease-syndrome combination" data. We believe that with the development of methodology, the application experience of Chinese medicine in humans can strongly support the development of new drugs in TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Projetos de Pesquisa , Síndrome
8.
Phytomedicine ; 101: 154093, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35447422

RESUMO

BACKGROUND: Heart failure (HF) is a leading cause of death worldwide. Nuanxinkang (NXK) is an effective Chinese herbal formula used in treating HF, but its underlying potential mechanisms have not been fully elucidated. PURPOSE: To explore the protective activities of NXK in ischemia/reperfusion (IR)-induced HF through modulating the ratio of proinflammatory (M1) and anti-inflammatory (M2) macrophage populations and leading to the alleviation of inflammation. MATERIALS AND METHODS: In vivo, mice were subjected to myocardial IR to generate HF mouse models. Mice in the NXK group were treated with NXK for 28 days. Cardiac function was detected by echocardiography. Major lesions on mouse hearts were determined by hematoxylin-eosin (HE) staining, Masson staining, and TUNEL staining. Inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and qPCR examination. Flow cytometric analyses and qPCR examination were utilized for monitoring the temporal dynamics of macrophage infiltration following IR. In vitro, two polarized models were established by stimulating RAW264.7 cells with 200 ng/ml lipopolysaccharide (LPS) or 20 ng/ml interleukin-4 (IL-4). The RAW264.7 cells with nuclear factor-κB (NF-κB) overexpression was generated by transient transfection of NF-κB plasmids, and NXK intervention was conducted on this cell model to further clarify the involvement of NF-κB signaling in the NXK-mediated HF process. RESULTS: In the present study, NXK was found to significantly contribute the cardiac function and ameliorate cardiac fibrosis and apoptosis after myocardial IR injury in vivo, which may be partially due to a decrease in inflammation. We therefore hypothesized that NXK reduced inflammatory damage by modulating subtypes of macrophages. And the results demonstrated that the percentage of proinflammatory macrophages infiltrated in the post-IR period was reduced with NXK treatment, and thereby blunting the wave of proinflammatory response and shifting the peak of the anti-inflammatory macrophage-mediated wound healing process towards an earlier time point. The further investigation showed that macrophage polarization was mediated by NXK through inhibiting the phosphorylation and the nuclear translocation of NF-κB. Besides, the phosphorylated IKKß and IκBα, upstream mediators of the NF-κB pathway, also decreased by NXK. Moreover, the overexpression of NF-κB partially reversed the NXK-induced favorable activities; and successfully compensated the suppressive effect on inflammation and the phosphorylation of NF-κB. CONCLUSION: In conclude, our results demonstrated that NXK induced the cardioprotective effects against IR injury through a regulatory axis of IKKß/IκBα/NF-κB-mediated macrophage polarization. The information gained from this study provide a possible natural strategy for anti-inflammatory treatment of HF.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isquemia , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Reperfusão
9.
J Ethnopharmacol ; 274: 114078, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33798659

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been traditionally used in the treatment of cardiovascular diseases (CVDs). Our previous study indicated that XYT exhibited protective effects in heart failure (HF). AIM OF THE STUDY: The aim of the present study was to determine the protective effects of XYT in pressure overload induced HF and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS: We analyzed XYT content using high-performance liquid chromatography (HPLC.). Mice were subjected to transverse aortic constriction (TAC) to generate pressure overload-induced cardiac remodeling and were then orally administered XYT or URMC-099 for 1 week after the operation. HL1 mouse cardiomyoblasts were induced by lipopolysaccharides (LPS) to trigger pyroptosis and were then treated with XYT or URMC-099. We used echocardiography (ECG), hematoxylin and eosin (H&E) staining, Masson's trichrome staining and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay to evaluate the effects of XYT. Messenger ribonucleic acid (mRNA) levels of collagen metabolism biomarkers and inflammation-related factors were detected. We determined protein levels of inflammation- and pyroptosis-related signaling pathway members via Western blot (WB). Caspase-1 activity was measured in cell lysate using a Caspase-1 Activity Assay Kit. Subsequently, to define the candidate ingredients in XYT that regulate mixed-lineage kinase-3 (MLK3), we used molecular docking (MD) to predict and evaluate binding affinity with MLK3. Finally, we screened 24 active potential compounds that regulate MLK3 via MD. RESULTS: ECG, H&E staining, Masson's trichrome staining and TUNEL assay results showed that XYT remarkably improved heart function, amelorated myocardial fibrosis and inhibited apoptosis in vivo. Moreover, it reduced expression of proteins or mRNAs related to collagen metabolism, including collagen type 1 (COL1), fibronectin (FN), alpha smooth-muscle actin (α-SMA), and matrix metalloproteinases-2 and -9 (MMP-2, MMP-9). XYT also inhibited inflammation and the induction of pyroptosis at an early stage, as well as attenuated inflammation and pyroptosis levels in vitro. CONCLUSION: Our data indicated that XYT exerted protective effects against pressure overload induced myocardial fibrosis (MF), which might be associated with the induction of pyroptosis-mediated MLK3 signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , MAP Quinase Quinase Quinases/metabolismo , Piroptose/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Pressão Sanguínea , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ecocardiografia , Fibrose , Coração/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Lipopolissacarídeos , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
10.
iScience ; 23(5): 101065, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361274

RESUMO

Excessive phosphorus in water is the primary culprit for eutrophication, which causes approximately $2.2 billion annual economic loss in the United States. This study demonstrates a phosphate-selective sustainable method by adopting Garcinia subelliptica leaves as a natural bio-template, where MgMn-layered double hydroxide (MgMn-LDH) and graphene oxide (GO) can be grown in situ to obtain L-GO/MgMn-LDH. After calcination, the composite shows a hierarchical porous structure and selective recognition of phosphate, which achieves significantly high and recyclable selective phosphate adsorption capacity and desorption rate of 244.08 mg-P g-1 and 85.8%, respectively. The detail variation of LDHs during calcination has been observed via in situ transmission electron microscope (TEM). Moreover, the roles in facilitating phosphate adsorption and antimicrobial ability of chemical constituents in Garcinia subelliptica leaves, biflavonoids, and triterpenoids have been investigated. These results indicate the proposed bio-templated adsorbent is practical and eco-friendly for phosphorus sustainability in commercial wastewater treatment.

11.
Pharmacol Res ; 147: 104251, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233804

RESUMO

Heart failure (HF) is a complex pathology for which single-agent therapy cannot provide comprehensive efficacy. Therefore, effective combination therapies for HF are increasingly emphasized. Multiple-component drugs derived from Chinese herbal formulae provide efficacy and safety when administered to patients with HF. Nuanxinkang (NXK) is a simplified Chinese herbal formula which has been widely applied in HF for decades. It exhibits comprehensive cardiac protective effects in HF patients as an adjuvant therapy, including improving heart function and quality-of-life, reducing inflammation, and regulating neurohormones. Nevertheless, the bioactive ingredients and mechanisms of action of NXK are unknown, which hinders its further application. Here, we examined the therapeutic efficacy of NXK in a mouse model of HF. Using transcriptome analysis and drug similarity analysis we found that NXK inhibits apoptosis and inflammation, while improving cardiac contraction and reversing myocardial fibrosis. In addition, we detected 21 bioactive species in NXK using UHPLC-MS analysis. Based on these data, we performed network pharmacology analysis to investigate ingredient-target-pathway interactions. We further confirmed 13 genes as potential targets, and assessed the effects of NXK on the AKT to validate the anti-apoptotic role of NXK both in vivo and in vitro. Thus, our work has identified a simplified herbal formula with efficacy against HF by exploring its constituents and mechanism of action, providing evidence for an innovative treatment strategy and novel therapeutic targets for HF.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Ilex , Panax , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transcriptoma/efeitos dos fármacos
12.
Br J Pharmacol ; 176(2): 267-281, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270561

RESUMO

BACKGROUND AND PURPOSE: Liquorice is the root of Glycyrrhiza glabra, which is a popular food in Europe and China that has previously shown benefits for skeletal fatigue and nutrient metabolism. However, the mechanism and active ingredients remain largely unclear. The aim of this study was to investigate the active ingredients of liquorice for muscle wasting and elucidate the underlying mechanisms. EXPERIMENTAL APPROACH: RNA-Seq and bioinformatics analysis were applied to predict the main target of liquorice. A machine learning model and a docking tool were used to predict active ingredients. Isotope labelling experiments, immunostaining, Western blots, qRT-PCR, ChIP-PCR and luciferase reporters were utilized to test the pharmacological effects in vitro and in vivo. The reverse effects were verified through recombination-based overexpression. KEY RESULTS: The liposoluble constituents of liquorice improved muscle wasting by inhibiting protein catabolism and fibre atrophy. We further identified FoxO1 as the target of liposoluble constituents of liquorice. In addition, hispaglabridin B (HB) was predicted as an inhibitor of FoxO1. Further studies determined that HB improved muscle wasting by inhibiting catabolism in vivo and in vitro. HB also markedly suppressed the transcriptional activity of FoxO1, with decreased expression of the muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1. CONCLUSIONS AND IMPLICATIONS: HB can serve as a novel natural food extract for preventing muscle wasting in chronic kidney disease and possibly other catabolic conditions.


Assuntos
Benzopiranos/farmacologia , Biologia Computacional , Proteína Forkhead Box O1/antagonistas & inibidores , Glycyrrhiza/química , Aprendizado de Máquina , Extratos Vegetais/farmacologia , Animais , Benzopiranos/química , Benzopiranos/isolamento & purificação , Relação Dose-Resposta a Droga , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
13.
Biomed Res Int ; 2017: 1024769, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29457023

RESUMO

We aimed to examine the effects of zinc supplementation on nutritional status, lipid profile, and antioxidant and anti-inflammatory therapies in maintenance hemodialysis (MHD) patients. We performed a systematic review and meta-analysis of randomized, controlled clinical trials of zinc supplementation. Metaregression analyses were utilized to determine the cause of discrepancy. Begg and Egger tests were performed to assess publication bias. Subgroup analysis was utilized to investigate the effects of zinc supplementation in certain conditions. In the crude pooled results, we found that zinc supplementation resulted in higher serum zinc levels (weighted mean difference [WMD] = 28.489; P < 0.001), higher dietary protein intake (WMD = 8.012; P < 0.001), higher superoxide dismutase levels (WMD = 357.568; P = 0.001), and lower levels of C-reactive protein (WMD = -8.618; P = 0.015) and malondialdehyde (WMD = -1.275; P < 0.001). The results showed no differences in lipid profile. In the metaregression analysis, we found that serum zinc levels correlated positively with intervention time (ß = 0.272; P = 0.042) and varied greatly by ethnicity (P = 0.023). Results from Begg and Egger tests showed that there was no significant bias in our meta-analysis (P > 0.1). Results of subgroup analysis supported the above results. Our analysis shows that zinc supplementation may benefit the nutritional status of MHD patients and show a time-effect relationship.


Assuntos
Suplementos Nutricionais , Metabolismo dos Lipídeos/efeitos dos fármacos , Diálise Renal , Zinco/uso terapêutico , Antioxidantes/uso terapêutico , Proteína C-Reativa/metabolismo , Humanos , Estado Nutricional , Ensaios Clínicos Controlados Aleatórios como Assunto , Zinco/sangue
14.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 26(6): 514-6, 520, 2006 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16841667

RESUMO

OBJECTIVE: To observe the effect of Gegen Qinlian Decoction (GQD) in combination with short-term intensive insulin treatment on type 2 diabetes mellitus (T2DM) of dampness-heat syndrome and its influence on dosage of insulin used. METHODS: The GQD group (n = 14) was treated by GQD and insulin, while the conventional group (n = 16) was given insulin intensive treatment alone. RESULTS: In the GQD group, the treatment was markedly effective in 5 patients, effective in 6 and ineffective in 3, the total effective rate being 78.6%, much better than that in the conventional group (2, 7, 7 and 56.3% respectively, u = 2.58, P < 0.01). And it took less time for controlling blood glucose (BG) in the GQD group (4.54 +/- 0.50 days) than that in the conventional group (5.31 +/- 0.57 days, P <0.01); furthermore, by the end of the treatment course, as compared with that at the time just after BG being controlled, the daily average insulin dosage used in the GQD group reduced by 9.07 +/- 6.51 U, while it was only 4.38 +/- 5.94 U in the conventional group, showing significant difference between them (P < 0.05). CONCLUSION: Based on short-term insulin intensive treatment, the combined using of GQD could reduce the dosage of insulin used and shows better clinical curative effect for patients with T2DM of dampness-heat syndrome.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Insulina/uso terapêutico , Medicina Tradicional Chinesa , Fitoterapia , Adulto , Diagnóstico Diferencial , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA