Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inhal Toxicol ; 35(9-10): 241-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330949

RESUMO

OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.


Assuntos
Petróleo , Pneumonia , Ratos , Animais , Petróleo/toxicidade , Petróleo/metabolismo , Transcriptoma , Pneumonia/patologia , Pulmão , Gases/análise , Gases/metabolismo , Gases/farmacologia , Inflamação/patologia , Oxidantes/metabolismo , Líquido da Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise
2.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068622

RESUMO

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Areia/química , Silicose/etiologia , Traqueia/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Poeira , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Quartzo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/efeitos adversos
3.
Mol Cell Biochem ; 234-235(1-2): 177-84, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12162431

RESUMO

Numerous investigations have been conducted to elucidate mechanisms involved in the initiation and progression of silicosis. However, most of these studies involved bolus exposure of rats to silica, i.e. intratracheal instillation or a short duration inhalation exposure to a high dose of silica. Therefore, the question of pulmonary overload has been an issue in these studies. The objective of the current investigation was to monitor the time course of pulmonary reactions of rats exposed by inhalation to a non-overload level of crystalline silica. To accomplish this, rats were exposed to 15 mg/m3 silica, 6 h/day, 5 days/week for up to 116 days of exposure. At various times (5-116 days exposure), animals were sacrificed and silica lung burden, lung damage, inflammation, NF-KB activation, reactive oxygen species and nitric oxide production, cytokine production, alveolar type II epithelial cell activity, and fibrosis were monitored. Activation of NF-KB/DNA binding in BAL cells was evident after 5 days of silica inhalation and increased linearly with continued exposure. Parameters of pulmonary damage, inflammation and alveolar type II epithelial cell activity rapidly increased to a significantly elevated but stable new level through the first 41 days of exposure and increased at a steep rate thereafter. Pulmonary fibrosis was measurable only after this explosive rise in lung damage and inflammation, as was the steep increase in TNF-alpha and IL-1 production from BAL cells and the dramatic rise in lavageable alveolar macrophages. Indicators of oxidant stress and pulmonary production of nitric oxide exhibited a time course which was similar to that for lung damage and inflammation with the steep rise correlating with initiation of pulmonary fibrosis. Staining for iNOS and nitrotyrosine was localized in granulomatous regions of the lung and bronchial associated lymphoid tissue. Therefore, these data demonstrate that the generation of oxidants and nitric oxide, in particular, is temporally and anatomically associated with the development of lung damage, inflammation, granulomas and fibrosis. This suggests an important role for nitric oxide in the initiation of silicosis.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/patologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Silicose/metabolismo , Silicose/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA