Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anat ; 227(3): 341-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26183820

RESUMO

Growth affects the performance of structure, so the pattern of growth must influence the role of a structure and an organism. Because animal performance is linked to morphological specialization, ontogenetic change in size may influence an organism's biological role. High bite force generation is presumably selected for in durophagous taxa. Therefore, these animals provide an excellent study system for investigating biomechanical consequences of growth on performance. An ontogenetic series of 27 cownose rays (Rhinoptera bonasus) were dissected in order to develop a biomechanical model of the feeding mechanism, which was then compared with bite forces measured from live rays. Mechanical advantage of the feeding apparatus was generally conserved throughout ontogeny, while an increase in the mass and cross-sectional area of the jaw adductors resulted in allometric gains in bite force generation. Of primary importance to forceful biting in this taxon is the use of a fibrocartilaginous tendon associated with the insertion of the primary jaw adductor division. This tendon may serve to redirect muscle forces anteriorly, transmitting them within the plane of biting. Measured bite forces obtained through electrostimulation of the jaw adductors in live rays were higher than predicted, possibly due to differences in specific tension of actual batoid muscle and that used in the model. Mass-specific bite forces in these rays are the highest recorded for elasmobranchs. Cownose rays exemplify a species that, through allometric growth of bite performance and morphological novelties, have expanded their ecological performance over ontogeny.


Assuntos
Arcada Osseodentária , Músculos da Mastigação , Rajidae , Animais , Fenômenos Biomecânicos , Força de Mordida , Comportamento Alimentar , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Mastigação/fisiologia , Músculos da Mastigação/anatomia & histologia , Músculos da Mastigação/fisiologia , Modelos Biológicos , Rajidae/anatomia & histologia , Rajidae/fisiologia , Tendões/anatomia & histologia , Tendões/fisiologia
2.
Nature ; 489(7415): 299-303, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22922646

RESUMO

Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide 'contextual' information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1-->vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.


Assuntos
Córtex Motor/fisiologia , Vias Neurais , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Vibrissas/fisiologia , Animais , Axônios/metabolismo , Sinalização do Cálcio , Retroalimentação Fisiológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Neurônios Motores/metabolismo , Movimento/fisiologia , Estimulação Física , Córtex Somatossensorial/citologia
3.
J Zoo Wildl Med ; 43(4): 750-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23272341

RESUMO

A number of captive sandtiger sharks (Carcharias taurus) in public aquaria have developed spinal deformities over the past decade, ranging in severity from mild curvature to spinal fracture and severe subluxation. To determine the frequency and etiologic basis of this disease, U.S. public aquaria participated in a two-stage epidemiologic study of resident sharks: 1) a history and husbandry survey and 2) hematology, clinical chemistry, and radiography conducted during health exams. Eighteen aquaria submitted data, samples, or both from 73 specimens, including 19 affected sharks (26%). Sharks caught off the Rhode Island coast or by pound net were smaller at capture and demonstrated a higher prevalence of deformity than did larger sharks caught from other areas via hook and line. Relative to healthy sharks, affected sharks were deficient in zinc, potassium, and vitamins C and E. Capture and transport results lead to two likely etiologic hypotheses: 1) that the pound-net capture process induces spinal trauma that becomes exacerbated over time in aquarium environments or 2) that small (and presumably young) sharks caught by pound net are exposed to disease-promoting conditions (including diet or habitat deficiencies) in aquaria during the critical growth phase of their life history. The last hypothesis is further supported by nutrient deficiencies among affected sharks documented in this study; potassium, zinc, and vitamin C play critical roles in proper cartilage-collagen development and maintenance. These correlative findings indicate that public aquaria give careful consideration to choice of collection methods and size at capture and supplement diets to provide nutrients required for proper development and maintenance of cartilaginous tissue.


Assuntos
Criação de Animais Domésticos/métodos , Fenômenos Fisiológicos da Nutrição Animal , Doenças dos Peixes/etiologia , Tubarões/fisiologia , Curvaturas da Coluna Vertebral/veterinária , Coluna Vertebral/anormalidades , Ração Animal , Animais , Dieta/veterinária , Tubarões/anormalidades , Curvaturas da Coluna Vertebral/etiologia , Curvaturas da Coluna Vertebral/patologia , Estados Unidos
4.
Nature ; 464(7292): 1182-6, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20376005

RESUMO

Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.


Assuntos
Comportamento Animal/fisiologia , Aprendizagem/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Animais , Transporte Axonal , Comportamento de Escolha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Odorantes/análise , Células Piramidais/fisiologia , Recompensa , Estimulação Química , Fatores de Tempo , Língua/citologia , Língua/inervação , Língua/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA