Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776739

RESUMO

Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills. Experimental microcosms combining surface sediment and crude oil were incubated at 4 °C over 21 weeks to evaluate the biodegradation potential of seabed microbiomes. Sediments sampled near the communities of Arviat and Chesterfield Inlet were assessed for biodegradation capabilities by combining hydrocarbon geochemistry with 16S rRNA gene and metagenomic sequencing, revealing decreased microbial diversity but enrichment of oil-degrading taxa. Alkane and aromatic hydrocarbon losses corresponded to detection of genes and genomes that encode enzymes for aerobic biodegradation of these compounds, pointing to the utility of marine microbiome surveys for predicting the fate of oil released into Arctic marine environments.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Nunavut , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Canadá , Biodegradação Ambiental
2.
mSystems ; 8(2): e0088422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786580

RESUMO

Petroleum reservoirs within the deep biosphere are extreme environments inhabited by diverse microbial communities and represent biogeochemical hot spots in the subsurface. Despite the ecological and industrial importance of oil reservoir microbiomes, systematic study of core microbial taxa and their associated genomic attributes spanning different environmental conditions is limited. Here, we compile and compare 343 16S rRNA gene amplicon libraries and 25 shotgun metagenomic libraries from oil reservoirs in different parts of the world to test for the presence of core taxa and functions. These oil reservoir libraries do not share any core taxa at the species, genus, family, or order levels, and Gammaproteobacteria was the only taxonomic class detected in all samples. Instead, taxonomic composition varies among reservoirs with different physicochemical characteristics and with geographic distance highlighting environmental selection and biogeography in these deep biosphere habitats. Gene-centric metagenomic analysis reveals a functional core of metabolic pathways including carbon acquisition and energy-yielding strategies consistent with biogeochemical cycling in other subsurface environments. Genes for anaerobic hydrocarbon degradation are observed in a subset of the samples and are therefore not considered to represent core functions in oil reservoirs despite hydrocarbons representing an abundant source of carbon in these deep biosphere settings. Overall, this work reveals common and divergent features of oil reservoir microbiomes that are shaped by and responsive to environmental factors, highlighting controls on subsurface microbial community assembly. IMPORTANCE This comprehensive analysis showcases how environmental selection and geographic distance influence the microbiome of subsurface petroleum reservoirs. We reveal substantial differences in the taxonomy of the inhabiting microbes but shared metabolic function between reservoirs with different in situ temperatures and between reservoirs separated by large distances. The study helps understand and advance the field of deep biosphere science by providing an ecological framework and footing for geologists, chemists, and microbiologists studying these habitats to elucidate major controls on deep biosphere microbial ecology.


Assuntos
Microbiota , Petróleo , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Campos de Petróleo e Gás , Microbiota/genética , Carbono
3.
Geobiology ; 20(6): 823-836, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35993193

RESUMO

Recent studies have reported up to 1.9 × 1029 bacterial endospores in the upper kilometre of deep subseafloor marine sediments, however, little is understood about their origin and dispersal. In cold ocean environments, the presence of thermospores (endospores produced by thermophilic bacteria) suggests that distribution is governed by passive migration from warm anoxic sources possibly facilitated by geofluid flow, such as advective hydrocarbon seepage sourced from petroleum deposits deeper in the subsurface. This study assesses this hypothesis by measuring endospore abundance and distribution across 60 sites in Eastern Gulf of Mexico (EGM) sediments using a combination of the endospore biomarker 2,6-pyridine dicarboxylic acid or 'dipicolinic acid' (DPA), sequencing 16S rRNA genes of thermospores germinated in 50°C sediment incubations, petroleum geochemistry in the sediments and acoustic seabed data from sub-bottom profiling. High endospore abundance is associated with geologically active conduit features (mud volcanoes, pockmarks, escarpments and fault systems), consistent with subsurface fluid flow dispersing endospores from deep warm sources up into the cold ocean. Thermospores identified at conduit sites were most closely related to bacteria associated with the deep biosphere habitats including hydrocarbon systems. The high endospore abundance at geological seep features demonstrated here suggests that recalcitrant endospores and their chemical components (such as DPA) can be used in concert with geochemical and geophysical analyses to locate discharging seafloor features. This multiproxy approach can be used to better understand patterns of advective fluid flow in regions with complex geology like the EGM basin.


Assuntos
Sedimentos Geológicos , Petróleo , Bactérias , Sedimentos Geológicos/microbiologia , Golfo do México , Hidrocarbonetos/análise , RNA Ribossômico 16S/genética , Esporos Bacterianos/química , Esporos Bacterianos/genética
4.
Appl Environ Microbiol ; 87(20): e0080021, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34378990

RESUMO

Oil spills in the subarctic marine environment off the coast of Labrador, Canada, are increasingly likely due to potential oil production and increases in ship traffic in the region. To understand the microbiome response and how nutrient biostimulation promotes biodegradation of oil spills in this cold marine setting, marine sediment microcosms amended with diesel or crude oil were incubated at in situ temperature (4°C) for several weeks. Sequencing of 16S rRNA genes following these spill simulations revealed decreased microbial diversity and enrichment of putative hydrocarbonoclastic bacteria that differed depending on the petroleum product. Metagenomic sequencing revealed that the genus Paraperlucidibaca harbors previously unrecognized capabilities for alkane biodegradation, which were also observed in Cycloclasticus. Genomic and amplicon sequencing together suggest that Oleispira and Thalassolituus degraded alkanes from diesel, while Zhongshania and the novel PGZG01 lineage contributed to crude oil alkane biodegradation. Greater losses in PAHs from crude oil than from diesel were consistent with Marinobacter, Pseudomonas_D, and Amphritea genomes exhibiting aromatic hydrocarbon biodegradation potential. Biostimulation with nitrogen and phosphorus (4.67 mM NH4Cl and 1.47 mM KH2PO4) was effective at enhancing n-alkane and PAH degradation following low-concentration (0.1% [vol/vol]) diesel and crude oil amendments, while at higher concentrations (1% [vol/vol]) only n-alkanes in diesel were consumed, suggesting toxicity induced by compounds in unrefined crude oil. Biostimulation allowed for a more rapid shift in the microbial community in response to petroleum amendments, more than doubling the rates of CO2 increase during the first few weeks of incubation. IMPORTANCE Increases in transportation of diesel and crude oil in the Labrador Sea will pose a significant threat to remote benthic and shoreline environments, where coastal communities and wildlife are particularly vulnerable to oil spill contaminants. Whereas marine microbiology has not been incorporated into environmental assessments in the Labrador Sea, there is a growing demand for microbial biodiversity evaluations given the pronounced impact of climate change in this region. Benthic microbial communities are important to consider given that a fraction of spilled oil typically sinks such that its biodegradation occurs at the seafloor, where novel taxa with previously unrecognized potential to degrade hydrocarbons were discovered in this work. Understanding how cold-adapted microbiomes catalyze hydrocarbon degradation at low in situ temperature is crucial in the Labrador Sea, which remains relatively cold throughout the year.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota , Petróleo/metabolismo , Poluentes da Água/metabolismo , Adaptação Fisiológica , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Temperatura Baixa , Hidrocarbonetos/metabolismo , Microbiota/genética , Terra Nova e Labrador , Poluição por Petróleo , RNA Ribossômico 16S/genética
5.
Mar Pollut Bull ; 165: 112154, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33735684

RESUMO

Disappearing sea ice in the Arctic region results in a pressing need to develop oil spill mitigation techniques suitable for ice-covered waters. The uncertainty around the nature of an oil spill in the Arctic arises from the ice-covered waters and sub-zero temperatures, and how they may influence natural attenuation efficiency. The Sea-ice Environmental Research Facility was used to create a simulated Arctic marine setting. This paper focuses on the potential for biodegradation of the bulk crude oil content (encapsulated in the upper regions of the ice), to provide insight regarding the possible fate of crude oil in an Arctic marine setting. Cheaper and faster methods of chemical composition analysis were applied to the samples to assess for weathering and transformation effects. Results suggest that brine volume in ice may not be sufficient at low temperatures to encompass biodegradation and that seawater is more suitable for biodegradation.


Assuntos
Poluição por Petróleo , Petróleo , Regiões Árticas , Biodegradação Ambiental , Camada de Gelo , Poluição por Petróleo/análise , Água do Mar
6.
Proc Natl Acad Sci U S A ; 117(20): 11029-11037, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354993

RESUMO

Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Microbiota/fisiologia , Água do Mar/microbiologia , Alcanos/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Golfo do México , Metagenoma , Metagenômica , Petróleo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
7.
Environ Microbiol ; 22(8): 3049-3065, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32216020

RESUMO

Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 µmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Euryarchaeota/metabolismo , Metano/metabolismo , Petróleo/metabolismo , Anaerobiose/fisiologia , Crescimento Quimioautotrófico/fisiologia , Hidrocarbonetos/química , Microbiota , Campos de Petróleo e Gás , Sulfatos/metabolismo
8.
Sci Total Environ ; 722: 137258, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32199353

RESUMO

Romulus C-42 is a decommissioned oil well on Ellesmere Island in the Canadian High Arctic, and is the northernmost well to have produced oil and gas anywhere in the world. The remote site has been untouched since a crude oil spill in 1972, offering a rare opportunity to examine natural attenuation in Arctic soils >40 years after a pollution event. Bacterial community composition in crude oil contaminated soils was significantly different from adjacent background soils. Two members of the genus Rhodanobacter (Alphaproteobacteria) were found consistently in contaminated soils, whereas two members of the genus Sphingomonas (Gammaproteobacteria) appeared opposite to each other, one consistently within the oil contaminated soil and the other consistently in non-oil contaminated soils. GC of soil hydrocarbon extracts revealed moderate levels of biodegradation relative to the original oil produced in 1972. Despite conditions permissive for bacterial activity (>0 °C) being limited to only a few months each year, natural attenuation by cold adapted soil microbial communities has taken place since the oil spill over 40 years ago. Rhodanobacter and Sphingomonas lineages are associated with contaminated and baseline conditions in this extreme environment, revealing the utility of bacterial diversity measurements for assessing long-term responses of Arctic soils to pollution. ORIGINALITY-SIGNIFICANCE STATEMENT: Romulus C-42, the northernmost onshore drilling well in the world, was decommissioned following a small crude oil spill in 1972. Soil bacterial diversity profiles obtained >40 years later revealed significant differences in oil contaminated soils relative to adjacent non-oil contaminated background soils, consistent with evidence for moderate biodegradation of spilled crude oil having taken place since 1972. The results indicate that microbial diversity profiling is an effective tool for assessing natural attenuation in remote High Arctic soils with a history of oil pollution.


Assuntos
Petróleo , Regiões Árticas , Biodegradação Ambiental , Canadá , Campos de Petróleo e Gás , RNA Ribossômico 16S , Solo , Microbiologia do Solo , Poluentes do Solo
9.
Nat Commun ; 10(1): 1816, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000700

RESUMO

The lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes, Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven by acetate and molecular hydrogen. These findings are supported by sediment geochemistry, metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally diverse communities potentially sustained through anaerobic hydrocarbon, acetate and hydrogen metabolism.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Petróleo/metabolismo , Acetatos/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Hidrocarbonetos/metabolismo , Hidrogênio/metabolismo , Metagenoma , Metagenômica/métodos , México , Interações Microbianas/fisiologia
10.
ISME J ; 12(8): 1895-1906, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29599524

RESUMO

Dormant endospores of thermophilic bacteria (thermospores) can be detected in cold marine sediments following high-temperature incubation. Thermospores in the cold seabed may be explained by a dispersal history originating in deep biosphere oil reservoir habitats where upward migration of petroleum fluids at hydrocarbon seeps transports viable cells into the overlying ocean. We assessed this deep-to-shallow dispersal hypothesis through geochemical and microbiological analyses of 111 marine sediments from the deep water Eastern Gulf of Mexico. GC-MS and fluorescence confirmed the unambiguous presence of thermogenic hydrocarbons in 71 of these locations, indicating seepage from deeply sourced petroleum in the subsurface. Heating each sediment to 50 °C followed by 16S rRNA gene sequencing revealed several thermospores with a cosmopolitan distribution throughout the study area, as well as thermospores that were more geographically restricted. Among the thermospores having a more limited distribution, 12 OTUs from eight different lineages were repeatedly detected in sediments containing thermogenic hydrocarbons. A subset of these were significantly correlated with hydrocarbons (p < 0.05) and most closely related to Clostridiales previously detected in oil reservoirs from around the world. This provides evidence of bacteria in the ocean being dispersed out of oil reservoirs, and suggests that specific thermospores may be used as model organisms for studying warm-to-cold transmigration in the deep sea.


Assuntos
Sedimentos Geológicos/microbiologia , Esporos Bacterianos/isolamento & purificação , Temperatura , Golfo do México , Hidrocarbonetos/análise , Petróleo
11.
Environ Microbiol ; 14(2): 387-404, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21824242

RESUMO

The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO(2) -reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense - an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems.


Assuntos
Epsilonproteobacteria/crescimento & desenvolvimento , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Sequência de Bases , Biodegradação Ambiental , Canadá , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Genes de RNAr , Dados de Sequência Molecular , Petróleo/análise , Petróleo/microbiologia , Filogenia , Análise de Sequência de DNA , Enxofre/metabolismo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA