Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 732: 139293, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438147

RESUMO

Biodegradation is a major determinant of chemical persistence in the environment and an important consideration for PBT and environmental risk assessments. It is influenced by several environmental factors including temperature and microbial community structure. According to REACH guidance, a temperature correction based on the Arrhenius equation is recommended for chemical persistence data not performed at the recommended EU mean surface water temperature. Such corrections, however, can lead to overly conservative P/vP assessments. In this paper, the relevance of this temperature correction is assessed for petroleum hydrocarbons, using measured surface water (marine and freshwater) degradation half-time (DT50) and degradation half-life (HL) data compiled from relevant literature. Stringent screening criteria were used to specifically select data from biodegradation tests containing indigenous microbes and conducted at temperatures close to their ambient sampling temperature. As a result, ten independent studies were identified, with 993 data points covering 326 hydrocarbon constituents. These data were derived from tests conducted with natural seawater, or freshwater, at temperatures ranging from 5 to 21 °C. Regressions were performed on the full hydrocarbon dataset and on several individual hydrocarbons. The results were compared to the trend as predicted by the Arrhenius equation and using the activation energy (Ea) as recommend in the REACH Guidance. The comparison shows that the correction recommended in REACH Guidance over predicts the effect of temperature on hydrocarbon biodegradation. These results contrast with temperature manipulated inocula where the test temperature is different from the ambient sampling temperature. In these manipulated systems, the effect of temperature follows the Arrhenius equation more closely. In addition, a more striking effect of temperature on the lag phase was observed with longer lag phases more apparent at lower temperatures. This indicates that the effect of temperature may indeed be even lower when considering hydrocarbon biodegradation without the initial lag phase.


Assuntos
Biodegradação Ambiental , Água Doce , Hidrocarbonetos , Petróleo , Água do Mar
2.
Mol Cell Proteomics ; 7(9): 1587-97, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18487603

RESUMO

Recent studies using stable isotope labeling with amino acids in culture (SILAC) in quantitative proteomics have made mention of the problematic conversion of isotope-coded arginine to proline in cells. The resulting converted proline peptide divides the heavy peptide ion signal causing inaccuracy when compared with the light peptide ion signal. This is of particular concern as it can effect up to half of all peptides in a proteomic experiment. Strategies to both compensate for and limit the inadvertent conversion have been demonstrated, but none have been shown to prevent it. Additionally, these methods combined with SILAC labeling in general have proven problematic in their large scale application to sensitive cell types including embryonic stem cells (ESCs) from the mouse and human. Here, we show that by providing as little as 200 mg/liter L-proline in SILAC media, the conversion of arginine to proline can be rendered completely undetectable. At the same time, there was no compromise in labeling with isotope-coded arginine, indicating there is no observable back conversion from the proline supplement. As a result, when supplemented with proline, correct interpretation of "light" and "heavy" peptide ratios could be achieved even in the worst cases of conversion. By extending these principles to ESC culture protocols and reagents we were able to routinely SILAC label both mouse and human ESCs in the absence of feeder cells and without compromising the pluripotent phenotype. This study provides the simplest protocol to prevent proline artifacts in SILAC labeling experiments with arginine. Moreover, it presents a robust, feeder cell-free, protocol for performing SILAC experiments on ESCs from both the mouse and the human.


Assuntos
Arginina/metabolismo , Células-Tronco Embrionárias/metabolismo , Prolina/metabolismo , Proteômica/métodos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura/metabolismo , Células HeLa , Humanos , Marcação por Isótopo/métodos , Camundongos , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA