Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pain ; 24(9): 1633-1644, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37121498

RESUMO

The origin of chronic pain is linked to inflammation, characterized by increased levels of proinflammatory cytokines in local tissues and systemic circulation. Transforming growth factor beta-activated kinase 1 (TAK1) is a key regulator of proinflammatory cytokine signaling that has been well characterized in the context of cancer and autoimmune disorders, yet its role in chronic pain is less clear. Here, we evaluated the ability of our TAK1 small-molecule inhibitor, takinib, to attenuate pain and inflammation in preclinical models of inflammatory, neuropathic, and primary pain. Inflammatory, neuropathic, and primary pain was modeled using intraplantar complete Freund's adjuvant (CFA), chronic constriction injury (CCI), and systemic delivery of the catechol-O-methyltransferase (COMT) inhibitor OR486, respectively. Behavioral responses evoked by mechanical and thermal stimuli were evaluated in separate groups of mice receiving takinib or vehicle prior to pain induction (baseline) and over 12 days following CFA injection, 4 weeks following CCI surgery, and 6 hours following OR486 delivery. Hindpaw edema was also measured prior to and 3 days following CFA injection. Upon termination of behavioral experiments, dorsal root ganglia (DRG) were collected to measure cytokines. We also evaluated the ability of takinib to modulate nociceptor activity via in vitro calcium imaging of neurons isolated from the DRG of Gcamp3 mice. In all 3 models, TAK1 inhibition significantly reduced hypersensitivity to mechanical and thermal stimuli and expression of proinflammatory cytokines in DRG. Furthermore, TAK1 inhibition significantly reduced the activity of tumor necrosis factor (TNF)-primed/capsaicin-evoked DRG nociceptive neurons. Overall, our results support the therapeutic potential of TAK1 as a novel drug target for the treatment of chronic pain syndromes with different etiologies. PERSPECTIVE: This article reports the therapeutic potential of TAK1 inhibitors for the treatment of chronic pain. This new treatment has the potential to provide a greater therapeutic offering to physicians and patients suffering from chronic pain as well as reduce the dependency on opioid-based pain treatments.


Assuntos
Dor Crônica , Animais , Camundongos , Catecol O-Metiltransferase , Dor Crônica/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/complicações , Ratos Sprague-Dawley , Ratos
2.
Pain ; 163(6): 1091-1101, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995041

RESUMO

ABSTRACT: Heat shock protein 90 (Hsp90) is a ubiquitously expressed integral cellular protein essential for regulating proteomic stress. Previous research has shown that Hsp90 regulates critical signaling pathways underlying chronic pain and inflammation. Recent discovery of membrane bound ectopic Hsp90 (eHsp90) on tumor cells has shown that Hsp90 induction to the plasma membrane can stabilize disease-relevant proteins. Here, we characterize eHsp90 expression in a mouse model of inflammation and demonstrate its role in nociception and pain. We found that intraplantar complete Freund adjuvant (CFA) induced robust expression of eHsp90 on the cell membranes of primary afferent nociceptors located in the L3-L5 dorsal root ganglia (DRG), bilaterally, with minimal to no expression in other tissues. Complete Freund adjuvant-induced increases in eHsp90 expression on lumbar DRG were significantly greater in females compared with males. Furthermore, exogenous Hsp90 applied to primary Pirt-GCaMP3 nociceptors induced increases in calcium responses. Responses were estrogen-dependent such that greater activity was observed in female or estrogen-primed male nociceptors compared with unprimed male nociceptors. Treatment of mice with the selective eHsp90 inhibitor HS-131 (10 nmol) significantly reversed CFA-induced mechanical pain, thermal heat pain, and hind paw edema. Notably, a higher dose (20 nmol) of HS-131 was required to achieve analgesic and anti-inflammatory effects in females. Here, we provide the first demonstration that inflammation leads to an upregulation of eHsp90 on DRG nociceptors in a sex-dependent manner and that inhibition of eHsp90 reduces nociceptor activity, pain, and inflammation. Thus, eHsp90 represents a novel therapeutic axis for the development of gender-tailored treatments for inflammatory pain.


Assuntos
Proteínas de Choque Térmico HSP90 , Nociceptores , Proteômica , Animais , Estrogênios/uso terapêutico , Feminino , Adjuvante de Freund/efeitos adversos , Gânglios Espinais/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Nociceptores/fisiologia , Dor/tratamento farmacológico
3.
Chem Biol ; 21(12): 1648-59, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500222

RESUMO

Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Humanos , Camundongos , Modelos Moleculares , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacocinética , Permeabilidade , Piperidinas/metabolismo , Piperidinas/farmacocinética , Agregados Proteicos/efeitos dos fármacos , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Chem Biol ; 17(7): 686-94, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20659681

RESUMO

A chemoproteomics-based drug discovery strategy is presented that utilizes a highly parallel screening platform, encompassing more than 1000 targets, with a focused chemical library prior to target selection. This chemoproteomics-based process enables a data-driven selection of both the biological target and chemical hit after the screen is complete. The methodology has been exemplified for the purine binding proteome (proteins utilizing ATP, NAD, FAD). Screening of an 8000 member library yielded over 1500 unique protein-ligand interactions, which included novel hits for the oncology target Hsp90. The approach, which also provides broad target selectivity information, was used to drive the identification of a potent and orally active Hsp90 inhibitor, SNX-5422, which is currently in phase 1 clinical studies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Choque Térmico HSP90/metabolismo , Proteômica/métodos , Trifosfato de Adenosina/metabolismo , Administração Oral , Animais , Ligação Competitiva , Ensaios Clínicos Fase I como Assunto , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA