Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 41(5): 1113-23, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11555291

RESUMO

The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP-binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand-binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter-1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co-transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Dickeya chrysanthemi/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/patogenicidade , Dados de Sequência Molecular , Família Multigênica , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Transcrição Gênica
2.
Mol Microbiol ; 41(5): 1125-32, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11555292

RESUMO

Erwinia chrysanthemi causes soft rot of plants by secreting pectinases which cleave pectin, a polysaccharide cementing the plant cell wall constituents. We demonstrated that two transporters mediate the uptake of the extracellularly formed oligomers in E. chrysanthemi. TogMNAB, a multicomponent transporter member of the ATP-binding cassette (ABC) superfamily, is only partially responsible for the uptake of pectic oligomers. Its action is completed by that of the second transporter, TogT, a member of the glycoside-pentoside-hexuronide (GPH) family (TC no. 2.2) which includes transporters involved in the uptake of complex sugars, mostly oligosaccharides and glycosides. Each transport system, TogMNAB and TogT, is able to independently mediate the transport of oligogalacturonides and the simultaneous inactivation of both is necessary to give a total absence of growth with pectin as the carbon source. The togT gene constitutes an independent transcriptional unit. Its expression is induced in the presence of pectic derivatives and it is subject to catabolite repression. In vitro, the repressor KdgR and the activator CRP both interact directly with the togT regulatory region. The decreased pathogenicity of single and double togT, togM mutants indicated that a deficiency in uptake of pectic oligomers leads to reduced bacterial multiplication which, in turn, limits plant maceration.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dickeya chrysanthemi/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Fatores de Transcrição , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Bases , Sítios de Ligação , Transporte Biológico Ativo , Sequência de Carboidratos , Proteínas de Transporte , Proteína Receptora de AMP Cíclico/metabolismo , Dickeya chrysanthemi/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Pectinas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica
3.
J Bacteriol ; 183(10): 3134-41, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11325942

RESUMO

Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.


Assuntos
Dickeya chrysanthemi/patogenicidade , Proteínas de Escherichia coli , Glucanos/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas , Proteínas de Bactérias/genética , Cichorium intybus/microbiologia , Clonagem Molecular , Meios de Cultura , Elementos de DNA Transponíveis , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Teste de Complementação Genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Óperon , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Virulência
4.
J Bacteriol ; 181(13): 3912-9, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10383957

RESUMO

Erwinia chrysanthemi 3937 secretes into the external medium several pectinolytic enzymes, among which are eight isoenzymes of the endo-cleaving pectate lyases: PelA, PelB, PelC, PelD, and PelE (family 1); PelI (family 4); PelL (family 3); and PelZ (family 5). In addition, one exo-cleaving pectate lyase, PelX (family 3), has been found in the periplasm of E. chrysanthemi. The E. chrysanthemi 3937 gene kdgC has been shown to exhibit a high degree of similarity to the genes pelY of Yersinia pseudotuberculosis and pelB of Erwinia carotovora, which encode family 2 pectate lyases. However, no pectinolytic activity has been assigned to the KdgC protein. After verification of the corresponding nucleotide sequence, we cloned a longer DNA fragment and showed that this gene encodes a 553-amino-acid protein exhibiting an exo-cleaving pectate lyase activity. Thus, the kdgC gene was renamed pelW. PelW catalyzes the formation of unsaturated digalacturonates from polygalacturonate or short oligogalacturonates. PelW is located in the bacterial cytoplasm. In this compartment, PelW action could complete the degradation of pectic oligomers that was initiated by the extracellular or periplasmic pectinases and precede the action of the cytoplasmic oligogalacturonate lyase, Ogl. Both cytoplasmic pectinases, PelW and Ogl, seem to act in sequence during oligogalacturonate depolymerization, since oligomers longer than dimers are very poor substrates for Ogl but are good substrates for PelW. The estimated number of binding subsites for PelW is three, extending from subsite -2 to +1, while it is probably two for Ogl, extending from subsite -1 to +1. The activities of the two cytoplasmic lyases, PelW and Ogl, are dependent on the presence of divalent cations, since both enzymes are inhibited by EDTA. In contrast to the extracellular pectate lyases, Ca2+ is unable to restore the activity of PelW or Ogl, while several other cations, including Co2+, Mn2+, and Ni2+, can activate both cytoplasmic lyases.


Assuntos
Proteínas de Bactérias , Dickeya chrysanthemi/genética , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Cátions Bivalentes , Compartimento Celular , Citoplasma/enzimologia , Dickeya chrysanthemi/enzimologia , Escherichia coli/genética , Genes Bacterianos , Dados de Sequência Molecular , Polissacarídeo-Liases/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
J Bacteriol ; 181(5): 1652-63, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10049400

RESUMO

Erwinia chrysanthemi 3937 secretes several pectinolytic enzymes, among which eight isoenzymes of pectate lyases with an endo-cleaving mode (PelA, PelB, PelC, PelD, PelE, PelI, PelL, and PelZ) have been identified. Two exo-cleaving enzymes, the exopolygalacturonate lyase, PelX, and an exo-poly-alpha-D-galacturonosidase, PehX, have been previously identified in other E. chrysanthemi strains. Using a genomic bank of a 3937 mutant with the major pel genes deleted, we cloned a pectinase gene identified as pelX, encoding the exopolygalacturonate lyase. The deduced amino acid sequence of the 3937 PelX is very similar to the PelX of another E. chrysanthemi strain, EC16, except in the 43 C-terminal amino acids. PelX also has homology to the endo-pectate lyase PelL of E. chrysanthemi but has a N-terminal extension of 324 residues. The transcription of pelX, analyzed by gene fusions, is dependent on several environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, nitrogen starvation, and catabolite repression. Regulation of pelX expression is dependent on the KdgR repressor, which controls almost all the steps of pectin catabolism, and on the global activator of sugar catabolism, cyclic AMP receptor protein. In contrast, PecS and PecT, two repressors of the transcription of most pectate lyase genes, are not involved in pelX expression. The pelX mutant displayed reduced pathogenicity on chicory leaves, but its virulence on potato tubers or Saintpaulia ionantha plants did not appear to be affected. The purified PelX protein has no maceration activity on plant tissues. Tetragalacturonate is the best substrate of PelX, but PelX also has good activity on longer oligomers. Therefore, the estimated number of binding subsites for PelX is 4, extending from subsites -2 to +2. PelX and PehX were shown to be localized in the periplasm of E. chrysanthemi 3937. PelX catalyzed the formation of unsaturated digalacturonates by attack from the reducing end of the substrate, while PehX released digalacturonates by attack from the nonreducing end of the substrate. Thus, the two types of exo-degrading enzymes appeared complementary in the degradation of pectic polymers, since they act on both extremities of the polymeric chain.


Assuntos
Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sequência de Aminoácidos , Sequência de Carboidratos , Biblioteca Genômica , Genótipo , Glucose/metabolismo , Glicerol/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Pectinas/biossíntese , Pectinas/química , Fenótipo , Polissacarídeo-Liases/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução Genética
6.
J Bacteriol ; 179(23): 7321-30, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9393696

RESUMO

Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids including a typical amino-terminal signal sequence of 19 amino acids. The purified mature PelI protein has an isoelectric point of about 9 and an apparent molecular mass of 34 kDa. PelI has a preference for partially methyl esterified pectin and presents an endo-cleaving activity with an alkaline pH optimum and an absolute requirement for Ca2+ ions. PelI is an extracellular protein secreted by the Out secretory pathway of E. chrysanthemi. The PelI protein is very active in the maceration of plant tissues. A pelI mutant displayed reduced pathogenicity on chicory leaves, but its virulence did not appear to be affected on potato tubers or Saintpaulia ionantha plants. The pelI gene constitutes an independent transcriptional unit. As shown for the other pel genes, the transcription of pelI is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, temperature, nitrogen starvation, and catabolite repression. Regulation of pelI expression appeared to be dependent on the three repressors of pectinase synthesis, KdgR, PecS, and PecT, and on the global activator of sugar catabolism, cyclic AMP receptor protein. A functional KdgR binding site was identified close to the putative pelI promoter. Analysis of the amino acid sequence of PelI revealed high homology with a pectate lyase from Erwinia carotovora subsp. carotovora (65% identity) and low homology with pectate lyases of the phytopathogenic fungus Nectria haematococca (Fusarium solani). This finding indicates that PelI belongs to pectate lyase class III. Using immunoblotting experiments, we detected PelI homologs in various strains of E. chrysanthemi and E. carotovora subsp. carotovora but not in E. carotovora subsp. atroseptica.


Assuntos
Dickeya chrysanthemi/genética , Isoenzimas/genética , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Cichorium intybus/microbiologia , Mapeamento Cromossômico , Clonagem Molecular , Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/patogenicidade , Erwinia/enzimologia , Erwinia/genética , Regulação Bacteriana da Expressão Gênica , Isoenzimas/classificação , Dados de Sequência Molecular , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/classificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Repressoras , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Solanum tuberosum/microbiologia , Especificidade da Espécie
7.
Mol Microbiol ; 24(6): 1285-301, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9218776

RESUMO

Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. The structural complexity of pectin requires the combined action of several pectinases for its efficient breakdown. Three types of pectinases have so far been identified in E. chrysanthemi: two pectin methyl esterases (PemA, PemB), a polygalacturonase (PehX), and eight pectate lyases (PelA, PelB, PelC, PelD, PelE, PelL, PelZ, PelX). We report in this paper the analysis of a novel enzyme, the pectin acetyl esterase encoded by the paeY gene. No bacterial form of pectin acetyl esterases has been described previously, while plant tissues and some pectinolytic fungi were found to produce similar enzymes. The paeY gene is present in a cluster of five pectinase-encoding genes, pelA-pelE-pelD-paeY-pemA. The paeY open reading frame is 1650 bases long and encodes a 551-residue precursor protein of 60704Da, including a 25-amino-acid signal peptide. PaeY shares one region of homology with a rhamnogalacturonan acetyl esterase of Aspergillus aculeatus. To characterize the enzyme, the paeY gene was overexpressed and its protein product was purified. PaeY releases acetate from sugar-beet pectin and from various synthetic substrates. Moreover, the enzyme was shown to act in synergy with other pectinases. The de-esterification rate by PaeY increased after previous demethylation of the pectins by PemA and after depolymerization of the pectin by pectate lyases. In addition, the degradation of sugar-beet pectin by pectate lyases is favoured after the removal of methyl and acetyl groups by PemA and PaeY, respectively. The paeY gene was first identified on the basis of its regulation, which shares several characteristics with that of other pectinases. Analysis of the paeY transcription, using gene fusions, revealed that it is induced by pectic catabolic products and is affected by growth phase, oxygen limitation and catabolite repression. Regulation of paeY expression appears to be dependent on the KdgR repressor, which controls all the steps of pectin catabolism, and on the catabolite regulatory protein (CRP), the global activator of sugar catabolism. The contiguous pelD, paeY and pemA genes are transcribed as an operon from a promoter proximal to pelD which allows the regulation by KdgR and CRP. However, transcription can be interrupted at the intra-operon Rho-independent terminator situated between pelD and paeY. The paeY mutant inoculated into Saintpaulia plants was less invasive than the wild-type E. chrysanthemi strain 3937, demonstrating the important role of PaeY in the soft-rot disease.


Assuntos
Proteínas de Bactérias/metabolismo , Dickeya chrysanthemi/enzimologia , Esterases/metabolismo , Acetilação , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , Dickeya chrysanthemi/patogenicidade , Esterases/genética , Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Pectinas/metabolismo , Transcrição Gênica
8.
J Bacteriol ; 179(8): 2503-11, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9098045

RESUMO

In Erwinia chrysanthemi 3937, pectate lyase activity mainly results from the cumulative action of five major isoenzymes, PelA to PelE. Comparison of their amino acid sequences revealed two families, PelB-C and PelA-D-E. Molecular cloning permitted expression of the different pel genes in Escherichia coli and the isolation of each Pel independently from the other isoenzymes. We used similar experimental conditions to overproduce and purify the five Pels in a one-step chromatography method. We analyzed some of the basic enzymatic properties of these five isoenzymes. PelA has a low specific activity compared to the other four enzymes. PelB and PelC have a high affinity for their substrate: about 10-fold higher than the enzymes of the PelA-D-E group. The optimum pH is more alkaline for PelB and PelC (about 9.2) than for PelA, PelD, and PelE (from 8 to 8.8). Below pH 7, activity was negligible for PelB and PelC, while PelA, PelD, and PelE retained 25 to 30% of their activities. The temperature optima were determined to be 50 degrees C for PelD and PelE, 55 degrees C for PelA, and 60 degrees C for PelB and PelC. Enzymes of the PelB-C group are more stable than those of the PelA-D-E group. Use of substrates presenting various degrees of methylation revealed that PelA, PelD, and PelE are active only for very low levels of methylation, while PelB and PelC are more active on partially methylated pectins (up to 22% for PelC and up to 45% for PelB). Pectate lyases have an absolute requirement for Ca2+ ions. For the five isoenzymes, maximal activity was obtained at a Ca2+ concentration of 0.1 mM. None of the tested cations (Ba2+, Co2+, Cu2+, Mg2+, Mn2+, Sr2+, Zn2+) can substitute for Ca2+. At a high concentration (1 mM), most of the divalent cations inhibited pectate lyase activity. In addition, we demonstrated that two compounds present in plant tissues, epicatechin and salicylic acid, inhibit the pectate lyases at a concentration of 0.2 mM.


Assuntos
Dickeya chrysanthemi/enzimologia , Isoenzimas/metabolismo , Polissacarídeo-Liases/antagonistas & inibidores , Polissacarídeo-Liases/metabolismo , Cloreto de Cálcio/farmacologia , Catequina/farmacologia , Cátions Bivalentes/farmacologia , Inibidores Enzimáticos , Escherichia coli/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Isoenzimas/antagonistas & inibidores , Isoenzimas/isolamento & purificação , Cinética , Metilação , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes de Fusão , Salicilatos/farmacologia , Ácido Salicílico , Especificidade por Substrato
9.
Mol Microbiol ; 19(3): 455-66, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8830237

RESUMO

The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB, codes for a 433-amino-acid protein. The PemB N-terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB-like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non-ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.


Assuntos
Hidrolases de Éster Carboxílico/química , Dickeya chrysanthemi/enzimologia , Proteínas de Membrana/química , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Fracionamento Celular , Centrifugação com Gradiente de Concentração , Mapeamento Cromossômico , Cromossomos Bacterianos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Pectinas/metabolismo , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
10.
Annu Rev Microbiol ; 50: 213-57, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8905080

RESUMO

Erwinia chrysanthemi is an enterobacterium that causes various plant diseases. Its pathogenicity results from the secretion of pectinolytic enzymes responsible for the disorganization of the plant cell wall. The E. chrysanthemi strain 3937 produces two pectin methylesterases, at least seven pectate lyases, a polygalacturonase, and a pectin lyase. The extracellular degradation of the pectin leads to the formation of oligogalacturonides that are catabolized through an intracellular pathway. The pectinase genes are expressed from independent cistrons, and their transcription is favored by environmental conditions such as presence of pectin and plant extracts, stationary growth phase, low temperature, oxygen or iron limitation, and so on. Moreover, transcription of the pectin lyase gene responds to DNA-damaging agents. The differential expressions of individual pectinase genes presumably reflect their role during plant infection. The regulation of pel genes requires several regulatory systems, including the KdgR repressor, which mediates the induction of all the pectinolysis genes in the presence of pectin catabolites. KdgR also controls the genes necessary for pectinase secretion and other pectin-inducible genes not yet characterized. PecS, a cytoplasmic protein homologous to other transcriptional regulators, can bind in vitro to the regulatory regions of pectinase and cellulase genes. The PecT protein, a member of the LysR family of transcriptional regulators, represses the expression of some pectinase genes and also affects other metabolic pathways of the bacteria. Other proteins involved in global regulations, such as CRP or HNS, can bind to the regulatory regions of the pectinase genes and affect their transcription.


Assuntos
Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/genética , Regulação Bacteriana da Expressão Gênica , Pectinas/metabolismo , Sequência de Carboidratos , Hidrólise , Dados de Sequência Molecular , Doenças das Plantas/etiologia , Sequências Reguladoras de Ácido Nucleico , Regulon
11.
Mol Microbiol ; 16(6): 1183-95, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8577252

RESUMO

Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pelA, pelB, pelC, pelD and pelE genes. Recently, a new set of pectate lyases was identified in E. chrysanthemi mutants deleted of those pel genes. We cloned the pelL gene, encoding one of these secondary pectate lyases of E. chrysanthemi 3937, from a genomic bank of a strain deleted of the five major pel genes. The nucleotide sequence of the region containing the pelL gene was determined. The pelL reading frame is 1275 bases long, corresponding to a protein of 425 amino acids including a typical amino-terminal signal sequence of 25 amino acids. Comparison of the amino acid sequences of PelL and the exo-pectate lyase PelX of E. chrysanthemi EC16 revealed a low homology, limited to 220 residues of the central part of the proteins. No homology was detected with other bacterial pectinolytic enzymes. Regulation of pelL transcription was analysed using gene fusion. As shown for the other pel genes, the transcription of pelL is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, temperature, iron starvation, osmolarity, anaerobiosis, nitrogen starvation and catabolite repression. Regulation of pelL expression appeared to be independent of the KdgR repressor, which controls all the steps of pectin catabolism. In contrast, the pecS gene, which is involved in regulation of the synthesis of the major pectate lyases and of cellulase, also appeared to be involved in pelL expression. The PelL protein is able to macerate plant tissue. This enzyme has a basic isoelectric point, presents an endo-cleaving activity on polygalacturonate or partially methylated pectin, with a basic pH optimum and an absolute requirement for Ca2+. The pelL mutant displayed a reduced virulence on potato tubers and Saintpaulia ionantha plants, demonstrating the important role of this enzyme in soft-rot disease.


Assuntos
Dickeya chrysanthemi/enzimologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Cloreto de Cálcio/farmacologia , Divisão Celular , Mapeamento Cromossômico , Dickeya chrysanthemi/genética , Regulação Bacteriana da Expressão Gênica/genética , Glucuronidase/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Dados de Sequência Molecular , Mutagênese/genética , Pectinas/metabolismo , Plantas/microbiologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Análise de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica/genética
12.
J Bacteriol ; 176(8): 2386-92, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8157608

RESUMO

The pathways of pectin and galacturonate catabolism in Erwinia chrysanthemi converge to form a common intermediate, 2-keto-3-deoxygluconate (KDG), which is phosphorylated by KDG kinase encoded by the kdgK gene. We cloned the kdgK gene of E. chrysanthemi 3937 by complementing an Escherichia coli kdgK mutation, using an RP4-derivative plasmid. One of the kdgK R-prime plasmids harbored a DNA insert of about 80 kb and carried the uxuA and uxuB genes involved in glucuronate catabolism and the celY gene coding for an E. chrysanthemi cellulase. The kdgK and celY genes were precisely located on this plasmid, and their respective transcriptional directions were determined. The nucleotide sequence of the kdgK region indicated that the kdgK reading frame is 981 bases long, corresponding to a protein of 329 amino acids with a molecular mass of 36,377 Da. Analysis of the deduced primary amino acid sequence showed that this enzyme is a new member of the PfkB family of carbohydrate kinases. Expression of kdgK is controlled by a negative regulatory gene, kdgR, which represses all the steps of pectin degradation. Near the putative promoter of the kdgK gene, we identified a putative KdgR-binding site and demonstrated that the KdgR protein specifically binds in vitro to this DNA region. The KdgR-KDG couple directly mediates the phenomenon of repression or induction. The KDG kinase, by limiting the intracellular inducer concentration, appears to be a key enzyme in induction of the whole catabolic pathway.


Assuntos
Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/genética , Genes Bacterianos/fisiologia , Pectinas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
13.
J Bacteriol ; 174(23): 7807-18, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1447147

RESUMO

To depolymerize plant pectin, the phytopathogenic enterobacterium Erwinia chrysanthemi produces a series of enzymes which include a pectin-methyl-esterase encoded by the pem gene and five isoenzymes of pectate lyases encoded by the five genes pelA, pelB, pelC, pelD, and pelE. We have constructed transcriptional fusions between the pectinase gene promoters and the uidA gene, encoding beta-glucuronidase, to study the regulation of these E. chrysanthemi pectinase genes individually. The transcription of the pectinase genes is dependent on many environmental conditions. All the fusions were induced by pectic catabolic products and responded, to different degrees, to growth phase, catabolite repression, temperature, and nitrogen starvation. Transcription of pelA, pelD, and pelE was also increased in anaerobic growth conditions. High osmolarity of the culture medium increased expression of pelE but decreased that of pelD; the other pectinase genes were not affected. The level of expression of each gene was different. Transcription of pelA was very low under all growth conditions. The expression of the pelB, pelC, and pem genes was intermediate. The pelE gene had a high basal level of expression. Expression of pelD was generally the most affected by changes in culture conditions and showed a low basal level but very high induced levels. These differences in the expression of the pectinase genes of E. chrysanthemi 3937 presumably reflect their role during infection of plants, because the degradation of pectic polymers of the plant cell walls is the main determinant of tissue maceration caused by soft rot erwiniae.


Assuntos
Erwinia/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Poligalacturonase/genética , Transcrição Gênica , Anaerobiose , Biodegradação Ambiental , Sequência de Carboidratos , Hidrolases de Éster Carboxílico/metabolismo , Repressão Enzimática , Erwinia/crescimento & desenvolvimento , Glucuronidase/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Concentração Osmolar , Pectinas/metabolismo , Poligalacturonase/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras , Temperatura
14.
Mol Microbiol ; 3(5): 573-81, 1989 May.
Artigo em Inglês | MEDLINE | ID: mdl-2527330

RESUMO

In this paper we describe the chromosomal location of various loci in Erwinia chrysanthemi strain 3937. Auxotrophic markers were obtained by chemical mutagenesis, antibiotic resistances were isolated spontaneously and mutations in sugar utilization were obtained by means of Mu insertions. These markers were located on the genetic linkage map of strain 3937 by using a conjugative system mediated by RP4::mini-Mu plasmids which permitted transfer of genetic material from any point of origin. The location of these markers was compared to that of previously located mutations. Many genes involved in pectinolysis were also located on the E. chrysanthemi 3937 map. These results permitted us to present a new genetic map containing 61 markers distributed over 34 widely scattered loci on the chromosome. Some pairs of markers giving high cotransfer frequencies were tested for cotransduction mediated by the generalized transducing phage phi-EC2; nine cotransducing pairs were found. It appears that the chromosomal locations of many of these loci are quite different to those of the well-known enterobacterium Escherichia coli but seem similar to those described for other E. chrysanthemi strains.


Assuntos
DNA Bacteriano/genética , Erwinia/genética , Ligação Genética , Bacteriófago mu/genética , Metabolismo dos Carboidratos , Mapeamento Cromossômico , Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Erwinia/metabolismo , Marcadores Genéticos , Família Multigênica , Mutação , Pectinas/metabolismo , Plasmídeos , Transdução Genética
15.
J Bacteriol ; 165(3): 937-41, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-3949717

RESUMO

Mutants of Erwinia chrysanthemi impaired in pectin degradation were isolated by chemical and Mu d(Ap lac) insertion mutagenesis. A mutation in the kduD gene coding for 2-keto-3-deoxygluconate oxidoreductase prevented the growth of the bacteria on polygalacturonate as the sole carbon source. Analysis of the kduD::Mu d(Ap lac) insertions indicated that kduD is either an isolated gene or the last gene of a polycistronic operon. Some of the Mu d(Ap lac) insertions were kduD-lac fusions in which beta-galactosidase synthesis reflected kduD gene expression. In all these fusions, beta-galactosidase activity was shown to be sensitive to catabolite repression by glucose and to be inducible by polygalacturonate, galacturonate, and other intermediates of polygalacturonate catabolism. Galacturonate-mediated induction was prevented by a mutation which blocked its metabolism to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate appeared to be the true inducer of kduD expression resulting from galacturonate degradation. 5-Keto-4-deoxyuronate or 2,5-diketo-3-deoxygluconate were the true inducers, originating from polygalacturonate cleavage. These three intermediates also appeared to induce pectate lyases, oligogalacturonate lyase, and 5-keto-4-deoxyuronate isomerase synthesis.


Assuntos
Aldose-Cetose Isomerases , Proteínas de Bactérias , Erwinia/metabolismo , Pectinas/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Carboidratos Epimerases/biossíntese , Indução Enzimática , Repressão Enzimática , Erwinia/enzimologia , Erwinia/genética , Genes Bacterianos , Gluconatos/metabolismo , Mutação , Polissacarídeo-Liases/biossíntese , Desidrogenase do Álcool de Açúcar/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA