Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytother Res ; 37(7): 2854-2863, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36814130

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-ß (Aß) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aß toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aß followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aß deposits in the brains of the mice. HH directly inhibited Aß aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.


Assuntos
Doença de Alzheimer , Houttuynia , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Houttuynia/metabolismo , Doenças Neuroinflamatórias , Camundongos Transgênicos , Componentes Aéreos da Planta , Modelos Animais de Doenças
2.
Food Funct ; 13(20): 10811-10822, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36193798

RESUMO

Neuroinflammation is a crucial pathogenic process involved in the development and deterioration of Alzheimer's disease (AD). Petasites japonicus is known for its beneficial effects on various disease states such as allergic reaction, oxidative stress and inflammation. However, it is still unknown whether P. japonicus has protective effects on neuroinflammation, especially microgliosis related to AD. The current study aimed to investigate whether an extract of P. japonicus (named KP-1) protects from microglial cell activation in vitro and in vivo. To demonstrate the anti-neuroinflammation effects of KP-1, the current study adopted the most widely used experimental models including the lipopolysaccharide (LPS)-induced microgliosis in vitro model and amyloid beta (Aß) oligomer (AßO)-induced neuroinflammation in vivo model, respectively. As a result, KP-1 pre-treatment reduced nitric oxide (NO) production, protein levels of inducible NO synthase (iNOS) and c-Jun N-terminal kinase (JNK) phosphorylation in BV2 cells which were significantly promoted by 100 ng ml-1 LPS treatment. Similarly, KP-1 administration protected mice from AßO-induced memory impairment scored by Y-maze and novel object recognition test (NORT). Moreover, KP-1 administration suppressed AßO-induced microglial cell activation measured by counting the number of ionized calcium binding adaptor molecule 1 (Iba-1)-positive cells in both the cortex and hippocampal dentate gyrus and measuring the mRNA expression of TNFα, IL-1ß and IL-6. Furthermore, AßO-induced synaptotoxicity was prevented by KP-1 administration which is in line with behavioral changes. Collectively, these findings suggest that KP-1 could be a potential functional food for protection against neuroinflammation, and prevents or delays the progression of AD.


Assuntos
Doença de Alzheimer , Petasites , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Microglia , Óxido Nítrico/metabolismo , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Pharmacol ; 13: 903664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784731

RESUMO

Loss of dopamine (DA) is one of the primary features of Parkinson's disease (PD); however, imbalances of non-dopaminergic neurotransmitters significantly contribute to the disabilities noted in advanced PD patients. DA-9805 is the ethanolic extraction of the root bark of Paeonia × suffruticosa Andrews (Paeoniaceae), the root of Angelica dahurica (Hoffm.) Benth. and Hook.f. ex Franch. and Sav. (Apiaceae) and the root of Bupleurum falcatum L. (Apiaceae), which have been widely utilized as an enhancer of motor function in East Asia. This study aimed to investigate whether DA-9805 modified motor dysfunctions and imbalances associated with DA and other neurotransmitters in a 6-hydroxydopamine-induced PD mouse. We confirmed the expressions of proteins related with neurotransmissions in the striatum. In addition, we measured the striatal neurotransmitters using HPLC and analyzed their correlation. DA-9805 significantly improved motor impairments and restored the altered levels of neurotransmitters in the striatum. Moreover, DA-9805 improved the altered expressions of tyrosine hydroxylase (TH), DA transporter, and choline acetyltransferase (ChAT) in the ipsilateral part of mouse striatum or SNpc, which implies the neuroprotection. We also found that the level of striatal acetylcholine (Ach) has the moderate negative correlation with motor functions and TH expression in the SNpc. This study indicates that DA-9805 restores motor dysfunctions by normalizing the increased levels of striatal Ach via modulating DA transmission and ChAT expressions as well as its neuroprotective effects.

4.
Food Funct ; 12(21): 10690-10699, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605514

RESUMO

Memory decline occurs due to various factors, including stress, depression, and aging, and lowers the quality of life. Several nutritional supplements and probiotics have been used to enhance memory function, and efforts have been made to develop mixed supplements with maximized efficacy. In this study, we aimed to examine whether a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, CCL01, enhances memory function and induces neurogenesis via nerve growth factor (NGF) induction. Firstly, we orally administered CCL01 to normal mice and assessed their memory function 4 weeks after the first administration by performing a step-through passive avoidance test. We found that CCL01 at 100 mg kg-1 treatment enhanced the fear-based memory function. By analyzing the expression of Ki-67 and doublecortin, which are the markers of proliferating cells and immature neurons, respectively, we observed that CCL01 induced neuronal proliferation and differentiation in the hippocampus of the mice. Additionally, we found that the expression of synaptic markers increased in the hippocampus of CCL01-treated mice. We measured the NGF expression in the supernatant of C6 cells after CCL01 treatment and found that CCL01 increased NGF release. Furthermore, treatment of CCL01-conditioned glial media on N2a cells increased neuronal differentiation via the TrkA/ERK/CREB signaling pathway and neurotrophic factor expression. Moreover, when CCL01 was administered and scopolamine was injected, CCL01 ameliorated memory decline. These results suggest that CCL01 is an effective enhancer of memory function and can be applied to various age groups requiring memory improvement.


Assuntos
Cuscuta/química , Lacticaseibacillus paracasei , Memória/efeitos dos fármacos , Fator de Crescimento Neural/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Sementes/química , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuroblastoma/tratamento farmacológico , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Fitoterapia , Piracetam/farmacologia , Ratos , Receptor trkA/genética , Receptor trkA/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
5.
Phytomedicine ; 84: 153501, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33626425

RESUMO

BACKGROUND: Neuroinflammation plays a major role in the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The regulation of microglia is an efficient therapeutic approach to controlling neuroinflammation. PURPOSE: In this study, we aimed to determine whether Artemisiae Iwayomogii Herba (AIH), which is herbal medicine traditionally used for inflammation-related disorders, controls neuroinflammatory responses by regulating the microglia-mediated signaling pathway. METHODS: BV-2 microglial cells were treated with AIH and lipopolysaccharides (LPS), then various pro-inflammatory mediators were analyzed using griess reaction, quantitative reverse-transcription polymerase chain reaction, or western blotting. C57BL/6 J mice were orally administered by AIH for 17 days and intraperitoneally injected with LPS for the last 14 days. The brains were collected and the microglial activation and nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) expression in the cortex and hippocampus were analyzed using immunohistochemistry or western blotting. RESULTS: In BV-2 microglial cells, we found that AIH inhibited nitric oxide (NO) production induced by LPS. AIH also suppressed the expressions of pro-inflammatory mediators, including inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6. The study also revealed that the effects of AIH are related to the regulation of the nuclear factor kappa B (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, we found that AIH prevented the formation of NLRP3 inflammasomes. Consistent with the results of in vitro studies on the brains of LPS-injected mice, we observed that AIH suppressed microglial activation and NLRP3 expression. CONCLUSION: Taken together, these results suggest that AIH attenuates neuroinflammation by regulating the NF-κB and MAPK pathways, and it may be used for treating neurological diseases.


Assuntos
Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Preparações de Plantas/farmacologia , Animais , Artemisia/química , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Preparações de Plantas/química , Fator de Necrose Tumoral alfa/metabolismo
6.
Nutrients ; 12(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023237

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Suplementos Nutricionais , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Extratos Vegetais/farmacologia , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Animais , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Feminino , Transtornos do Espectro Alcoólico Fetal/psicologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia
7.
Nutr Neurosci ; 23(6): 455-464, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30230979

RESUMO

Objective: Ginger and its compound, 6-shogaol, have been known for improving gastrointestinal (GI) function and reducing inflammatory responses in GI tract. Recently, the treatment of GI dysfunction has been recognized as an important part of the management of neurodegenerative diseases, especially for Parkinson's disease (PD). In this study, we investigated whether ginger and 6-shogaol attenuate disruptions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the intestinal barrier and the enteric dopaminergic neurons.Methods: C57BL/6J mice received MPTP (30 mg/kg) for 5 days to induce GI alterations. Ginger (30, 100, 300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 15 days including the period of MPTP injection.Results: Ginger and 6-shogaol protected intestinal tight junction proteins disrupted by MPTP in mouse colon. In addition, ginger and 6-shogaol suppressed the increase of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α and IL-1ß activated by macrophage. Moreover, ginger and 6-shogaol suppressed the MPTP-induced enteric dopaminergic neuronal damage via increasing the cell survival signaling pathway.Conclusion: These results indicate that ginger and 6-shogaol restore the disruption of intestinal integrity and enteric dopaminergic neurons in an MPTP-injected mouse PD model by inhibiting the processes of inflammation and apoptosis, suggesting that they may attenuate the GI dysfunction in PD patients.


Assuntos
Catecóis/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Junções Íntimas/efeitos dos fármacos , Zingiber officinale , Animais , Colite/induzido quimicamente , Colite/metabolismo , Neurônios Dopaminérgicos/metabolismo , Zingiber officinale/química , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Intoxicação por MPTP/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/metabolismo
8.
Biomed Pharmacother ; 117: 109184, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387167

RESUMO

With the elderly population rapidly growing, the prevalence of Parkinson's disease (PD) is quickly increasing because neurodegenerative disorders are usually late-onset. Herbal medicines and formula are adjuvant therapies of conventional PD agents, which result in serious side effects with long-term use. This study evaluated the neuroprotective effects of DA-9805, a standardized herbal formula that consists of an ethanolic extract of Moutan Cortex Radix, Angelica Dahuricae Radix, and Bupleuri Radix against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in vitro and in vivo. In PC12 cells, DA-9805 at concentrations of 1 and 10 µg/mL ameliorated cell viability, which was reduced by 6-OHDA. In addition, DA-9805 activated the extracellular-regulated kinase-nuclear transcription factor-erythroid 2-related factor 2 pathway, subsequently stimulating antioxidative enzymes such as NAD(P)H:quinone oxidoreductase 1 and catalase and suppressing apoptosis. Furthermore, DA-9805 prevented 6-OHDA-induced movement impairment, as well as a decrease of dopaminergic neurons and dopamine transmission in rodents. Taken together, these results suggest that the mixed herbal formula DA-9805 may be a pharmaceutical agent for preventing or improving PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Preparações de Plantas/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NADP/metabolismo , Síndromes Neurotóxicas/metabolismo , Células PC12 , Extratos Vegetais/farmacologia , Ratos
9.
Toxins (Basel) ; 12(1)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905825

RESUMO

Ephedra sinica Stapf (EH) exert toxic effects, such as excitability, cardiac arrhythmia, and others. On the contrary, in traditional herbal medicine, EH and gypsum (GF) are used most often to treat symptoms caused by external stressors. The hypothalamus plays a crucial role in thermal homeostasis. Inflammatory response in the hypothalamus by thermal stressors may affect thermal and energy homeostasis. This study investigates the effect of EH and GF against heat-induced mouse model. Mice were divided into four groups: saline, saline plus heat, EH plus heat, and GF plus heat treated groups. Heat stress was fixed at 43 °C for 15 min once daily for 3 days. Weight and ear and rectal temperature measurements were made after terminating heat stress. Hypothalamus tissue was collected to evaluate the HSP70, nuclear factor kappa-Β (NF-kB), and interleukin (IL)-1ß protein expression levels. EH and GF treatment suppressed the increased body temperature. EH significantly ameliorated heat-induced body weight loss, compared to gypsum. Regulatory effects of EH and GF for body temperature and weight against heat stress were mediated by IL-1ß reduction. EH showed significant HSP70 and NF-kB inhibition against heat stress. EH and GF contribute to the inhibition of heat-induced proinflammatory factors and the promotion of hypothalamic homeostasis.


Assuntos
Sulfato de Cálcio/uso terapêutico , Ephedra sinica , Transtornos de Estresse por Calor/tratamento farmacológico , Doenças Hipotalâmicas/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase , Temperatura Alta , Doenças Hipotalâmicas/etiologia , Inflamação/etiologia , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia
10.
Nutrients ; 10(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562977

RESUMO

Ultraviolet (UV) light, a major risk factor for external skin photoaging, induces oxidative stress in skin. UV causes a breakdown of skin homeostasis by impairing the extracellular matrix and inducing cell death. Tectorigenin, a constituent of leopard lily (Belamcanda chinensis L.) rhizome, has been reported to possess antioxidant, hair-darkening, and anti-inflammatory activities; however, the effect of tectorigenin on UV-B-induced skin damage is unknown. Here, we investigated the anti-skin-damage effects of tectorigenin against UV-B-stimulated oxidative stress in human keratinocytes. We irradiated HaCaT cells with UV-B (25 mJ/cm²), followed by treatment with tectorigenin for 24 h. We found that tectorigenin decreased the levels of intracellular reactive oxygen species by increasing the expression of anti-oxidative enzymes, such as glutathione and catalase. Furthermore, tectorigenin inhibited apoptosis by reducing caspase-3- and Bcl-2-associated protein-X levels, and increasing Bcl-2 protein levels. Tectorigenin also decreased matrix metalloproteinase-1 levels and increased type 1 collagen levels, thus preventing collagen degradation. These data demonstrate that tectorigenin exerts anti-skin-damage effects in human keratinocytes by attenuating UV-B-induced hyper-oxidation, apoptosis, and collagen degradation.


Assuntos
Colágeno/metabolismo , Isoflavonas/farmacologia , Queratinócitos/efeitos dos fármacos , Lilium/química , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Sobrevivência Celular , Flavonoides/farmacologia , Glutationa/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Metaloproteinase 1 da Matriz/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rizoma , Pele/citologia , Pele/metabolismo , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo
11.
Food Funct ; 9(1): 171-178, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29171599

RESUMO

Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta1-42 (Aß1-42) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aß1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aß1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/toxicidade , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Schizosaccharomyces/metabolismo , Zingiber officinale/microbiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Fermentação , Zingiber officinale/química , Hipocampo/citologia , Hipocampo/fisiopatologia , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Extratos Vegetais/metabolismo
12.
Nutrients ; 9(10)2017 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28946610

RESUMO

Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa ß, tumor necrosis factor-α, and interleukin-1ß (IL-1ß) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology.


Assuntos
Antipiréticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encefalopatias/prevenção & controle , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Febre/tratamento farmacológico , Transtornos de Estresse por Calor/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Morte Celular/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Coptis chinensis , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Febre/complicações , Febre/fisiopatologia , Transtornos de Estresse por Calor/complicações , Transtornos de Estresse por Calor/fisiopatologia , Hidrocortisona/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Fitoterapia , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos
13.
Phytother Res ; 31(3): 497-506, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112442

RESUMO

Amyloid-beta oligomer (AßO) is a soluble oligomer form of the Aß peptide and the most potent amyloid-beta form that induces neuronal damage in Alzheimer's disease. We investigated the effect of dried white ginseng extract (WGE) on neuronal cell damage and memory impairment in intrahippocampal AßO (10 µM)-injected mice. Mice were treated with WGE (100 and 500 mg/kg/day, p.o.) for 12 days after surgery. WGE improved memory impairment by inhibiting hippocampal cell death caused by AßO. In addition, AßO-injected mice treated with WGE showed restoration of reduced synaptophysin and choline acetyltransferase intensity and lower levels of ionized calcium-binding adaptor molecule 1 in the hippocampus compared with those of vehicle-treated controls. These results suggest that WGE reverses memory impairment in Alzheimer's disease by attenuating neuronal damage and neuroinflammation in the AßO-injected mouse hippocampus. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Panax/química , Extratos Vegetais/farmacologia , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Morte Celular/efeitos dos fármacos , Hipocampo/citologia , Masculino , Transtornos da Memória/patologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos
14.
Neuroscience ; 340: 166-175, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27771535

RESUMO

Parkinson's disease (PD) is one of the progressive neurodegenerative diseases of whose condition is characterized by dopaminergic neuronal cell loss and dysfunction in the substantia nigra pars compacta (SNpc) and the striatum. Recent studies have demonstrated that the nuclear receptor-related 1 protein (Nurr1) is critical of dopaminergic phenotype induction in mesencephalic dopaminergic neurons. Further, Nurr1 engages in synthesizing and storing dopamine through regulating levels of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). The aim of this study was to investigate the protective effects of a herbal extract combination, consisting of Bupleurum falcatum, Paeonia suffruticosa, and Angelica dahurica (MABH), on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like symptoms and to elucidate possible mechanisms of action focusing on Nurr1. In a subacute mouse model of MPTP-induced PD, MABH treatment resulted in recovery from movement impairments. MABH prevented dopamine depletion and protected against dopaminergic neuronal degradation induced by MPTP. Additionally, MABH increased Nurr1 expression in the SNpc of mice. To evaluate the effects of MABH on Nurr1 expression, we measured the protein levels of Nurr1 and its regulating factors using Western blot analysis in PC12 cells. MABH treatment induced the phosphorylation of extracellular signal-regulated kinase protein via increasing the protein expression levels of Nurr1 and ultimately the levels of TH, VMAT2, and DAT. These results indicate that MABH has protective effects on dopaminergic neurons in a mouse model of PD by regulating Nurr1.


Assuntos
Angelica , Bupleurum , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Paeonia , Extratos Vegetais/farmacologia , Animais , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Células PC12 , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Fitoterapia , Ratos
15.
J Altern Complement Med ; 22(4): 262-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27003511

RESUMO

OBJECTIVES: The concomitant use of herbal and conventional drugs accelerates the possibility of clinically significant herb-drug interactions (HDIs). This paper aims to analyze the current status of HDI studies worldwide and to review studies on HDI-induced pharmacodynamic (PD) interactions. METHODS: HDI studies published from 2000 to 2014 and indexed in PubMed were categorized according to publication year, area/country, study methods and objectives, and disease categories. The reviewed studies focused on HDI-induced PD; each PD interaction with concurrent use of approximately 100 herbal drugs and 70 conventional drugs was summarized. All PD-related articles were categorized according to four characteristics: herbal drugs, conventional drugs, types of PD interaction, and type of study. Among them, 17 well-designed clinical studies were evaluated by using the Jadad Quality Assessment Scale. RESULTS: The number of HDI reports has gradually increased since 2000, with a primary focus on neoplasms and diseases of the circulatory system. Most of these investigated pharmacokinetic reactions, such as cytochrome P450 enzyme metabolism, with fewer reports investigating PD. Most PD interaction studies investigated warfarin, ginkgo leaves, and St. John's wort. An evaluation of 17 studies revealed a generally positive view of PD effects involving synergism or reduced toxicity and a high average quality score (>3 points on a 0-5 scale). CONCLUSIONS: These results demonstrate that most HDI studies so far have examined PK interactions and have been limited to very few conventional drugs and herbal drugs. This suggests that more studies focusing on PD are necessary to understand interactions between commonly used herbal and conventional drugs.


Assuntos
Interações Ervas-Drogas , Preparações de Plantas , Animais , Pesquisa Biomédica , Estudos Clínicos como Assunto , Humanos , Camundongos , Ratos
16.
Biomol Ther (Seoul) ; 22(3): 176-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25009697

RESUMO

Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aß) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aß-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aß-induced neurotoxicity. In mice with Aß-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aß-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 µg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA