Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(5): 3206-3217, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293604

RESUMO

Zinc is an essential micronutrient required for proper function during neuronal development because it can modulate neuronal function and structure. A fully functional description of zinc in axonal processing in the central nervous system remains elusive. Here, we define the role of intracellular zinc in axon formation and elongation, involving the mammalian target of rapamycin complex 1 (mTORC1). To investigate the involvement of zinc in axon growth, we performed an ex vivo culture of mouse hippocampal neurons and administrated ZnCl2 as a media supplement. At 2 days in vitro, the administration of zinc induced the formation of multiple and elongated axons in the ex vivo culture system. A similar outcome was witnessed in callosal projection neurons in a developing mouse brain. Treatment with extracellular zinc activated the mTORC1 signaling pathway in mouse hippocampal neuronal cultures. The zinc-dependent enhancement of neuronal processing was inhibited either by the deactivation of mTORC1 with RAPTOR shRNA or by mTOR-insensitive 4EBP1 mutants. Additionally, zinc-dependent mTORC1 activation enhanced the axonal translation of TC10 and Par3 may be responsible for axonal growth. We identified a promising role of zinc in controlling axonogenesis in the developing brain, which, in turn, may indicate a novel structural role of zinc in the cytoskeleton and developing neurons.


Assuntos
Axônios , Zinco , Animais , Axônios/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurônios/metabolismo , Transdução de Sinais , Zinco/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1861(2): 23-36, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27815218

RESUMO

BACKGROUND: Drug resistance from apoptosis is a challenging issue with different cancer types, and there is an interest in identifying other means of inducing cytotoxicity. Here, treatment of neuroblastoma cells with oxyresveratrol (OXYRES), a natural antioxidant, led to dose-dependent cell death and increased autophagic flux along with activation of caspase-dependent apoptosis. METHODS: For cell viability, we performed the CCK-8 assay. Protein expression changes were with Western blot and immunocytochemistry. Silencing of proteins was with siRNA. The readouts for cell cycle, mitochondria membrane potential, caspase-3, autophagy and apoptosis were performed with flow cytometry. RESULTS: Phosphorylation of p38 MAPK increased with OXYRES treatment and inhibition of p38 reduced autophagy and cell death from OXYRES. In contrast, PI3K/AKT/mTOR signaling decreased in the target cells with OXYRES and inhibition of PI3K or mTOR enhanced OXYRES-mediated cytotoxicity with increased levels of autophagy. Modulation of either of the apoptosis and autophagy flux pathways affected the extent of cell death by OXYRES, but did not affect the indicators of these pathways with respect to each other. Both pathways were independent of ROS generation or p53 activation. CONCLUSION: OXYRES led to cell death from autophagy, which was independent of apoptosis induction. The OXYRES effects were due to changes in the activity levels of p38 MAPK and PI3K/AKT/mTOR. GENERAL SIGNIFICANCE: With two independent and parallel pathways for cytotoxicity induction in target cells, this study puts forward a potential utility for OXYRES or the pathways it represents as novel means of inducing cell death in neuroblastoma cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Mol Cells ; 39(2): 119-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26674967

RESUMO

Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3ß activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.


Assuntos
Angelica/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Autofagia/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Mol Cells ; 38(7): 630-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25921607

RESUMO

Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE (10 µg/ml) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer.


Assuntos
Apoptose/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Morus/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Neuroblastoma/patologia , Raízes de Plantas , Ratos , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais
5.
Exp Neurobiol ; 22(3): 208-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24167415

RESUMO

Melandryum firmum is a biennial plant that has been used in traditional medicine for treatment of bacterial and fungal infection. Here, we investigated molecular mechanisms underlying apoptotic effects of Melandryum firmum root extract (MFRE) in neuroblastoma cells, since the effect of this natural compound on cancer cells has not been fully clarified. The root extract of M. firmum reduced cell proliferation, as revealed by cell viability assay. However, MFRE-treated cells exhibited morphological changes including cell rounding, neurite retraction and membrane blebbing. These alterations of cellular shape suggest this morphological change might be due to the apoptosis which shows fragmented DNA. In addition, MFRE up-regulated the pro-apoptotic protein Bax and down-regulated the anti-apoptotic protein Bcl-2 and Mcl-1, which also finally activated cleaved caspase-3 in a dose-dependent manner, as determined by western blot analyses. Together, these findings demonstrate that apoptotic and cytotoxic effects of MFRE on SH-SY5Y cells are mediated by intrinsic mitochondria-mediated caspase pathway and that this natural extract might be effective as an anticancer agent for neuroblastoma malignancies.

6.
Mol Cell Biochem ; 377(1-2): 187-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404459

RESUMO

Gambogic acid (GA) is the dry resin of Garcinia hanburyi (Guttiferae) with potent anti-tumor activity, various bioactivities, including detoxification, homeostasis, anti-inflammatory, and parasiticide, whereas the effect of this natural compound on cancer cells has not been clearly clarified. Here, we examined cellular cytotoxicity by cell viability assay and DNA fragmentation by DNA-ladder assay. Activation of different protein expressions were detected by western blot analyses. We first demonstrated that GA reduces the human SH-SY5Y neuroblastoma cell viability with IC50 of 1.28 µM at 6 h which has less toxicity in fibroblast cells. However, lower concentration GA significantly downregulated the expression of anti-apoptotic protein including Bcl-2, Bcl-xL, and Mcl-1, which also dramatically activated cleaved caspase-9 and -3 in a dose- and time-dependent manner. Consequently, GA-induced cytotoxicity was not mediated by the Fas/FasL and PI3 K/AKT/GSK-3ß signaling pathway. In addition, GA-induced cells showed damage morphology which had become cell rounding, neurite retraction, membrane blebbing and shrunken in a dose- and time-dependent manner that clearly indicates this morphological change might be due to the process of apoptosis which shows fragmented DNA. Therefore, the findings presented in this study demonstrate that apoptotic effects of GA on SH-SY5Y cells are mediated by intrinsic mitochondrion-dependent caspase pathway which suggests this natural compound might be effective as an anti-cancer agent for neuroblastoma malignancies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Xantonas/farmacologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , Medicamentos de Ervas Chinesas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Neuroblastoma , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA