Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 127(3): 702-713, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044860

RESUMO

Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, is made up of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and noncyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, nonamidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, nonamidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, nonamidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by nonamidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, nonamidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system.NEW & NOTEWORTHY Myosuppressin (pQDLDHVFLRFamide), a well-characterized crustacean neuropeptide, and its noncyclized (QDLDHVFLRFamide) and nonamidated (pQDLDHVFLRFG) isoforms alter the output of the cardiac neuromuscular system of the American lobster, Homarus americanus. Mature myosuppressin and noncyclized myosuppressin elicited similar and significant changes across all levels of the isolated system, whereas responses to nonamidated myosuppressin were significantly different from other isoforms and were highly variable. These data support the diversity of peptide action as a function of peptide structure.


Assuntos
Nephropidae , Neuropeptídeos , Animais , Coração/fisiologia , Músculos , Nephropidae/fisiologia , Neuropeptídeos/farmacologia , Isoformas de Proteínas/farmacologia
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445418

RESUMO

Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.


Assuntos
Perfilação da Expressão Gênica/métodos , Nephropidae/genética , Neuropeptídeos/farmacologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sistema Cardiovascular/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular , Mineração de Dados , Bases de Dados Genéticas , Regulação da Expressão Gênica/efeitos dos fármacos , Miocárdio/metabolismo , Nephropidae/efeitos dos fármacos , Nephropidae/metabolismo , Análise de Sequência de RNA , Células Sf9 , Distribuição Tecidual
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445707

RESUMO

The gram-negative bacterial genus Liberibacter includes economically important pathogens, such as 'Candidatus Liberibacter asiaticus' that cause citrus greening disease (or Huanglongbing, HLB) and 'Ca. Liberibacter solanacearum' (Lso) that cause zebra chip disease in potato. Liberibacter pathogens are fastidious bacteria transmitted by psyllids. Pathogen manipulation of the host' and vector's immune system for successful colonization is hypothesized to be achieved by Sec translocon-dependent effectors (SDE). In previous work, we identified hypothetical protein effector 1 (HPE1), an SDE from Lso, that acts as a suppressor of the plant's effector-triggered immunity (ETI)-like response. In this study, using a yeast two-hybrid system, we identify binding interactions between tomato RAD23 proteins and HPE1. We further show that HPE1 interacts with RAD23 in both nuclear and cytoplasmic compartments in planta. Immunoblot assays show that HPE1 is not ubiquitinated in the plant cell, but rather the expression of HPE1 induced the accumulation of other ubiquitinated proteins. A similar accumulation of ubiquitinated proteins is also observed in Lso infected tomato plants. Finally, earlier colonization and symptom development following Lso haplotype B infection are observed in HPE1 overexpressing plants compared to wild-type plants. Overall, our results suggest that HPE1 plays a role in virulence in Lso pathogenesis, possibly by perturbing the ubiquitin-proteasome system via direct interaction with the ubiquitin-like domain of RAD23 proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Liberibacter/metabolismo , Solanum lycopersicum/metabolismo , DNA Bacteriano , Liberibacter/enzimologia , Liberibacter/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Canais de Translocação SEC/metabolismo , Solanum tuberosum/microbiologia , Proteínas Ubiquitinadas
4.
Invert Neurosci ; 20(4): 24, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244646

RESUMO

Over the past decade, many new peptide families have been identified via in silico analyses of genomic and transcriptomic datasets. While various molecular and biochemical methods have confirmed the existence of some of these new groups, others remain in silico discoveries of computationally assembled sequences only. An example of the latter are the CCRFamides, named for the predicted presence of two pairs of disulfide bonded cysteine residues and an amidated arginine-phenylalanine carboxyl-terminus in family members, which have been identified from annelid, molluscan, and arthropod genomes/transcriptomes, but for which no precursor protein-encoding cDNAs have been cloned. Using routine transcriptome mining methods, we identified four Homarus americanus (American lobster) CCRFamide transcripts that share high sequence identity across the predicted open reading frames but more limited conservation in their 5' terminal ends, suggesting the Homarus gene undergoes alternative splicing. RT-PCR profiling using primers designed to amplify an internal fragment common to all of the transcripts revealed expression in the supraoesophageal ganglion (brain), eyestalk ganglia, and cardiac ganglion. Variant specific profiling revealed a similar profile for variant 1, eyestalk ganglia specific expression of variant 2, and an absence of variant 3 expression in the cDNAs examined. The broad distribution of CCRFamide transcript expression in the H. americanus nervous system suggests a potential role as a locally released and/or circulating neuropeptide. This is the first report of the cloning of a CCRFamide-encoding cDNA from any species, and as such, provides the first non-in silico support for the existence of this invertebrate peptide family.


Assuntos
Proteínas de Artrópodes/genética , Nephropidae/genética , Neuropeptídeos/genética , Animais , Encéfalo , Clonagem Molecular , Olho , Gânglios dos Invertebrados , Coração , Transcriptoma
5.
J Neurophysiol ; 124(4): 1241-1256, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755328

RESUMO

The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.


Assuntos
Gânglios dos Invertebrados/metabolismo , Neurônios Motores/metabolismo , Neuropeptídeos/metabolismo , Potenciais Sinápticos , Animais , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Coração/inervação , Neurônios Motores/fisiologia , Nephropidae , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
6.
Invert Neurosci ; 20(2): 7, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32215729

RESUMO

In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DAα2R) receptors, octopamine alpha (Homam-OctαR), beta-1, beta-2, beta-3, beta-4, and octopamine-tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DAα2R, Homam-OctαR, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.


Assuntos
Encéfalo/metabolismo , Gânglios dos Invertebrados/metabolismo , Nephropidae/metabolismo , Receptores de Amina Biogênica/metabolismo , Animais
7.
Invert Neurosci ; 20(2): 5, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115669

RESUMO

Gap junctions are physical channels that connect adjacent cells, permitting the flow of small molecules/ions between the cytoplasms of the coupled units. Innexin/innexin-like proteins are responsible for the formation of invertebrate gap junctions. Within the nervous system, gap junctions often function as electrical synapses, providing a means for coordinating activity among electrically coupled neurons. While some gap junctions allow the bidirectional flow of small molecules/ions between coupled cells, others permit flow in one direction only or preferentially. The complement of innexins present in a gap junction determines its specific properties. Thus, understanding innexin diversity is key for understanding the full potential of electrical coupling in a species/system. The decapod crustacean cardiac ganglion (CG), which controls cardiac muscle contractions, is a simple pattern-generating neural network with extensive electrical coupling among its circuit elements. In the lobster, Homarus americanus, prior work suggested that the adult neuronal innexin complement consists of six innexins (Homam-Inx1-4 and Homam-Inx6-7). Here, using a H. americanus CG-specific transcriptome, we explored innexin complement in this portion of the lobster nervous system. With the exception of Homam-Inx4, all of the previously described innexins appear to be expressed in the H. americanus CG. In addition, transcripts encoding seven novel putative innexins (Homam-Inx8-14) were identified, four (Homam-Inx8-11) having multiple splice variants, e.g., six for Homam-Inx8. Collectively, these data indicate that the innexin complement of the lobster nervous system in general, and the CG specifically, is likely significantly greater than previously reported, suggesting the possibility of expanded gap junction diversity and function in H. americanus.


Assuntos
Proteínas de Artrópodes/metabolismo , Conexinas/metabolismo , Gânglios dos Invertebrados/metabolismo , Coração/fisiologia , Nephropidae/metabolismo , Animais , Simulação por Computador , Junções Comunicantes/metabolismo
8.
J Exp Biol ; 222(Pt 2)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30464043

RESUMO

Recent genomic/transcriptomic studies have identified a novel peptide family whose members share the carboxyl terminal sequence -GSEFLamide. However, the presence/identity of the predicted isoforms of this peptide group have yet to be confirmed biochemically, and no physiological function has yet been ascribed to any member of this peptide family. To determine the extent to which GSEFLamides are conserved within the Arthropoda, we searched publicly accessible databases for genomic/transcriptomic evidence of their presence. GSEFLamides appear to be highly conserved within the Arthropoda, with the possible exception of the Insecta, in which sequence evidence was limited to the more basal orders. One crustacean in which GSEFLamides have been predicted using transcriptomics is the lobster, Homarus americanus Expression of the previously published transcriptome-derived sequences was confirmed by reverse transcription (RT)-PCR of brain and eyestalk ganglia cDNAs; mass spectral analyses confirmed the presence of all six of the predicted GSEFLamide isoforms - IGSEFLamide, MGSEFLamide, AMGSEFLamide, VMGSEFLamide, ALGSEFLamide and AVGSEFLamide - in H. americanus brain extracts. AMGSEFLamide, of which there are multiple copies in the cloned transcripts, was the most abundant isoform detected in the brain. Because the GSEFLamides are present in the lobster nervous system, we hypothesized that they might function as neuromodulators, as is common for neuropeptides. We thus asked whether AMGSEFLamide modulates the rhythmic outputs of the cardiac ganglion and the stomatogastric ganglion. Physiological recordings showed that AMGSEFLamide potently modulates the motor patterns produced by both ganglia, suggesting that the GSEFLamides may serve as important and conserved modulators of rhythmic motor activity in arthropods.


Assuntos
Amidas/química , Nephropidae/fisiologia , Rede Nervosa/fisiologia , Neuropeptídeos/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Nephropidae/genética , Neuropeptídeos/química , Neurotransmissores/química , Neurotransmissores/genética , Alinhamento de Sequência
9.
Invert Neurosci ; 18(4): 12, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276482

RESUMO

The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine ß-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.


Assuntos
Aminas/metabolismo , Enzimas/análise , Nephropidae/enzimologia , Neuropeptídeos/biossíntese , Neurotransmissores/biossíntese , Animais , Gânglios dos Invertebrados
10.
J Biol Chem ; 279(49): 51500-7, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15358772

RESUMO

In most Lepidoptera, pheromone biosynthesis is regulated by a neuropeptide termed pheromone biosynthesis activating neuropeptide (PBAN). Although much is known about the cellular targets of PBAN, identification and functional characterization of the PBAN receptor (PBANR) has proven to be elusive. Given the sequence similarity between the active C-terminal regions of PBAN and neuromedin U, it was hypothesized that their respective receptors might also be similar in structure (Park, Y., Kim, Y. J., and Adams, M. E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11423-11428). Consequently, utilizing primers constructed from the conserved regions of insect neuromedin U receptor homologues, a full-length 2780-nucleotide clone encoding a 46-kDa G protein-coupled receptor was amplified from a Bombyx mori pheromone gland cDNA library. Tissue distribution analyses revealed that the receptor transcript is specific to the pheromone gland where it undergoes significant up-regulation in the day preceding eclosion. When transiently expressed in Sf9 cells, the B. mori PBANR responds to PBAN by mobilizing extracellular calcium in a dose-dependent manner. Confocal microscopic studies demonstrated the specificity of enhanced green fluorescent protein-tagged B. mori PBANR for PBAN and showed that PBAN induces internalization of the PBANR.PBAN complex. The rapid onset of internalization is mediated by a 67-amino acid C-terminal extension absent in the cloned Helicoverpa zea PBANR, which suggests that receptor internalization in that species likely utilizes a different mechanism. From these results, we have concluded that the cloned receptor gene encodes the B. mori PBANR and that it is both structurally and functionally distinct from the H. zea PBANR.


Assuntos
Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Bombyx , Cálcio/química , Cálcio/metabolismo , Linhagem Celular , Clonagem Molecular , Primers do DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Biblioteca Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Insetos , Ligantes , Proteínas de Membrana/química , Microscopia Confocal , Dados de Sequência Molecular , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Receptores de Neurotransmissores/química , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA