Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 29(4): 123-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945588

RESUMO

Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.


Assuntos
Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Camelídeos Americanos/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Interleucina-6/imunologia , Modelos Imunológicos , Modelos Moleculares , Proteínas Recombinantes/química , Alinhamento de Sequência
2.
MAbs ; 7(4): 693-706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018625

RESUMO

Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1ß and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform.


Assuntos
Região Variável de Imunoglobulina , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Animais , Camelídeos Americanos , Camelus , Cristalografia por Raios X , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Estrutura Terciária de Proteína
3.
Appl Microbiol Biotechnol ; 72(4): 732-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16636830

RESUMO

Streptococcus mutans is the main cause of dental caries. We evaluated the therapeutic effect of variable regions of a llama heavy chain antibody fragments directed against S. mutans named S36-VHH (S for Streptococcus) alone or fused with glucose oxidase (GOx) from Aspergillus niger. Western blot analysis and ELISA revealed binding of the S36-VHH to the streptococcal antigen I/II adhesin molecule of S. mutans serotype C. In a rat-desalivated caries model, daily administration of S36-VHH significantly reduced the development of smooth surface caries. No additional therapeutic effect of GOx was observed. Our results suggest that llama VHH antibodies may be a potential benefit as prophylaxis against dental caries.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Camelídeos Americanos/imunologia , Cárie Dentária/prevenção & controle , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Streptococcus mutans/efeitos dos fármacos , Animais , Camelídeos Americanos/fisiologia , Cárie Dentária/microbiologia , Glucose Oxidase/farmacologia , Fragmentos de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/farmacologia , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/farmacologia , Imunotoxinas/toxicidade , Boca/microbiologia , Ratos , Ratos Sprague-Dawley , Streptococcus mutans/enzimologia , Streptococcus mutans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA