Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(12): 8093-8111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107118

RESUMO

Phytosomes consist of a phytochemical bound to the hydrophilic choline head of a phospholipid. Their use in food products is gaining interest. However, literature on the use of food-grade solvents, crude plant extracts as opposed to pure compounds, and unrefined phospholipids to prepare phytosomes is limited. Furthermore, studies on compound stability are lacking. This study aimed to develop nano-phytosome vesicles prepared from inexpensive food-grade ingredients to improve the stability of polyphenolic compounds. Cyclopia subternata extract (CSE) was selected as a source of phenolic compounds. It contains substantial quantities of C-glucosyl xanthones, benzophenones, and dihydrochalcones, compounds largely neglected to date. The effect of process conditions on the complexation of CSE polyphenols with minimally refined food-grade fat-free soybean lecithin (PC) was studied. The PC:CSE ratio, sonication time, and reaction temperature were varied. This resulted in phytosomes ranging in vesicle size (113.7-312.7 nm), polydispersity index (0.31-0.48), and zeta potential (-55.0 to -38.9 mV). Variation was also observed in the yield (93.5%-96.0%), encapsulation efficiency (3.7%-79.0%), and loading capacity (LC, 1.3%-14.7%). Vesicle size and LC could be tailored by adjusting the sonication time and PC:CSE ratio, respectively. Chemical interaction between the lipid and the phenolic compounds was confirmed with nuclear magnetic resonance. Phytosomal formulation protected the compounds against degradation when freeze-dried samples were stored at 25 and 40°C for 6 months at low relative humidity. The study provided valuable information on the importance of specific process parameters in producing food-grade phytosomes with improved phenolic stability.

2.
J Sci Food Agric ; 103(12): 5697-5708, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37078979

RESUMO

BACKGROUND: The shelf-life of a functional herbal tea-based beverage is important not only for consumer acceptability, but also for the retention of bioactive compounds. The present study aimed to clarify the role of common iced tea beverage ingredients (citric and ascorbic acids) on the shelf-life stability of an herbal tea-based beverage. A hot water extract of green Cyclopia subternata, also used as honeybush tea, was selected as the main ingredient because it provides different types of phenolic compounds associated with bioactive properties (i.e. xanthones, benzophenones, flavanones, flavones and dihydrochalcones). RESULTS: The model solutions were stored for 180 and 90 days at 25 and 40 °C, respectively. Changes in their volatile profiles and color were also quantified as they contribute to product quality. 3',5'-Di-ß-d-glucopyranosyl-3-hydroxyphloretin (HPDG; dihydrochalcone) and, to a lesser extent, mangiferin (xanthone), were the most labile compounds. Both compounds were thus identified as critical quality indicators to determine shelf-life. The stability-enhancing activity of the acids depended on the compound; ascorbic acid and citric acid enhanced the stability of HPDG and mangiferin, respectively. However, when considering all the major phenolic compounds, the base solution without acids was the most stable. This was also observed for the color and major volatile aroma-active compounds [α-terpineol, (E)-ß-damascenone, 1-p-menthen-9-al and trans-ocimenol]. CONCLUSION: The addition of acids, added for stability and taste in ready-to-drink iced tea beverages, could thus have unwanted consequences in that they could accelerate compositional changes and shorten the shelf-life of polyphenol-rich herbal tea beverages. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fabaceae , Chás de Ervas , Xantonas , Chás de Ervas/análise , Fabaceae/química , Bebidas/análise , Fenóis/química , Ácido Ascórbico/química , Chá , Extratos Vegetais/química
3.
Molecules ; 26(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34500693

RESUMO

Green rooibos extract (GRE), shown to improve hyperglycemia and HDL/LDL blood cholesterol, has potential as a nutraceutical beverage ingredient. The main bioactive compound of the extract is aspalathin, a C-glucosyl dihydrochalcone. The study aimed to determine the effect of common iced tea ingredients (citric acid, ascorbic acid, and xylitol) on the stability of GRE, microencapsulated with inulin for production of a powdered beverage. The stability of the powder mixtures stored in semi-permeable (5 months) and impermeable (12 months) single-serve packaging at 30 °C and 40 °C/65% relative humidity was assessed. More pronounced clumping and darkening of the powders, in combination with higher first order reaction rate constants for dihydrochalcone degradation, indicated the negative effect of higher storage temperature and an increase in moisture content when stored in the semi-permeable packaging. These changes were further increased by the addition of crystalline ingredients, especially citric acid monohydrate. The sensory profile of the powders (reconstituted to beverage strength iced tea solutions) changed with storage from a predominant green-vegetal aroma to a fruity-sweet aroma, especially when stored at 40 °C/65% RH in the semi-permeable packaging. The change in the sensory profile of the powder mixtures could be attributed to a decrease in volatile compounds such as 2-hexenal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,Z)-2,6-nonadienal and (E)-2-decenal associated with "green-like" aromas, rather than an increase in fruity and sweet aroma-impact compounds. Green rooibos extract powders would require storage at temperatures ≤ 30 °C and protection against moisture uptake to be chemically and physically shelf-stable and maintain their sensory profiles.


Assuntos
Aspalathus/química , Bebidas/análise , Chá/química , Compostos Orgânicos Voláteis/química
4.
Food Chem ; 351: 129273, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33662907

RESUMO

Heat processing of ready-to-drink beverages is required to ensure a microbiologically safe product, however, this can result in the loss of bioactive compounds responsible for functionality. The objective of this study was to establish the thermal stability of a novel dihydrochalcone, 3',5'-di-ß-d-glucopyranosyl-3-hydroxyphloretin (2), 3',5'-di-ß-d-glucopyranosylphloretin (3) and other Cyclopia subternata phenolic compounds, in model solutions with or without citric acid and ascorbic acid. The solutions were heated at 93, 121 and 135 °C, relevant to pasteurisation, commercial sterilisation and ultra-high temperature (UHT) pasteurisation, respectively. For most compounds, the acids decreased the second order reaction rate constants, up to 27 times. Compound 2 (46.29 ± 0.53 (g/100 g)-1 h-1), and to a lesser extent compound 3 (5.94 ± 0.01 (g/100 g)-1 h-1) were the most thermo-unstable compounds when treated at 135 °C without added acids. Even though differential effects were observed for compounds at different temperatures and formulations, overall, the phenolic compounds were most stable under UHT pasteurisation conditions.


Assuntos
Bebidas/análise , Chalconas/química , Fabaceae/química , Extratos Vegetais/química , Polifenóis/química , Temperatura , Glicosilação , Pasteurização , Fenóis/análise , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA