Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3819, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732875

RESUMO

Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia/métodos , Niacinamida/administração & dosagem , Receptor ErbB-2/imunologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Progressão da Doença , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Acetato de Medroxiprogesterona , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor ErbB-2/metabolismo , Análise de Sobrevida
2.
Immunol Rev ; 280(1): 165-174, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29027230

RESUMO

Cancer cells are subjected to constant selection by the immune system, meaning that tumors that become clinically manifest have managed to subvert or hide from immunosurveillance. Immune control can be facilitated by induction of autophagy, as well as by polyploidization of cancer cells. While autophagy causes the release of ATP, a chemotactic signal for myeloid cells, polyploidization can trigger endoplasmic reticulum stress with consequent exposure of the "eat-me" signal calreticulin on the cell surface, thereby facilitating the transfer of tumor antigens into dendritic cells. Hence, both autophagy and polyploidization cause the emission of adjuvant signals that ultimately elicit immune control by CD8+ T lymphocytes. We investigated the possibility that autophagy and polyploidization might also affect the antigenicity of cancer cells by altering the immunopeptidome. Mass spectrometry led to the identification of peptides that were presented on major histocompatibility complex (MHC) class I molecules in an autophagy-dependent fashion or that were specifically exposed on the surface of polyploid cells, yet lost upon passage of such cells through immunocompetent (but not immunodeficient) mice. However, the preferential recognition of autophagy-competent and polyploid cells by the innate and cellular immune systems did not correlate with the preferential recognition of such peptides in vivo. Moreover, vaccination with such peptides was unable to elicit tumor growth-inhibitory responses in vivo. We conclude that autophagy and polyploidy increase the immunogenicity of cancer cells mostly by affecting their adjuvanticity rather than their antigenicity.


Assuntos
Adjuvantes Imunológicos , Antígenos de Neoplasias/imunologia , Morte Celular , Vigilância Imunológica , Neoplasias/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Monitorização Imunológica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA