Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prog Brain Res ; 260: 441-451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637231

RESUMO

Tinnitus is the perception of a phantom sound and the patient's reaction to it. Although much progress has been made, tinnitus remains a scientific and clinical enigma of high prevalence and high economic burden, with an estimated prevalence of 10%-20% among the adult population. The EU is funding a new collaborative project entitled "Unification of Treatments and Interventions for Tinnitus Patients" (UNITI, grant no. 848261) under its Horizon 2020 framework. The main goal of the UNITI project is to set the ground for a predictive computational model based on existing and longitudinal data attempting to address the question of which treatment or combination of treatments is optimal for a specific patient group based on certain parameters. Clinical, epidemiological, genetic and audiological data, including signals reflecting ear-brain communication, as well as patients' medical history, will be analyzed making use of existing databases. Predictive factors for different patient groups will be extracted and their prognostic relevance validated through a Randomized Clinical Trial (RCT) in which different patient groups will undergo a combination of tinnitus therapies targeting both auditory and central nervous systems. From a scientific point of view, the UNITI project can be summarized into the following research goals: (1) Analysis of existing data: Results of existing clinical studies will be analyzed to identify subgroups of patients with specific treatment responses and to identify systematic differences between the patient groups at the participating clinical centers. (2) Genetic and blood biomarker analysis: High throughput Whole Exome Sequencing (WES) will be performed in well-characterized chronic tinnitus cases, together with Proximity Extension Assays (PEA) for the identification of blood biomarkers for tinnitus. (3) RCT: A total of 500 patients will be recruited at five clinical centers across Europe comparing single treatments against combinational treatments. The four main treatments are Cognitive Behavioral Therapy (CBT), hearing aids, sound stimulation, and structured counseling. The consortium will also make use of e/m-health applications for the treatment and assessment of tinnitus. (4) Decision Support System: An innovative Decision Support System will be implemented, integrating all available parameters (epidemiological, clinical, audiometry, genetics, socioeconomic and medical history) to suggest specific examinations and the optimal intervention strategy based on the collected data. (5) Financial estimation analysis: A cost-effectiveness analysis for the respective interventions will be calculated to investigate the economic effects of the interventions based on quality-adjusted life years. In this paper, we will present the UNITI project, the scientific questions that it aims to address, the research consortium, and the organizational structure.


Assuntos
Auxiliares de Audição , Zumbido , Estimulação Acústica , Terapia Cognitivo-Comportamental , Humanos , Som , Zumbido/terapia
2.
J Clin Invest ; 128(9): 3826-3839, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29953415

RESUMO

BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium für Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.


Assuntos
Biomarcadores/sangue , Ritmo Circadiano/fisiologia , Adulto , Cronoterapia , Ritmo Circadiano/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Marcadores Genéticos , Voluntários Saudáveis , Humanos , Aprendizado de Máquina , Masculino , Modelos Biológicos , Monócitos/metabolismo , Medicina de Precisão , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA