Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1081515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113153

RESUMO

Objective: Aging has great influence on the clinical treatment effect of cerebrovascular diseases, and evidence suggests that the effect may be associated with age-related brain plasticity. Electroacupuncture is an effective alternative treatment for traumatic brain injury (TBI). In the present study, we aimed to explore the effect of aging on the cerebral metabolic mechanism of electroacupuncture to provide new evidence for developing age-specific rehabilitation strategies. Methods: Both aged (18 months) and young (8 weeks) rats with TBI were analyzed. Thirty-two aged rats were randomly divided into four groups: aged model, aged electroacupuncture, aged sham electroacupuncture, and aged control group. Similarly, 32 young rats were also divided into four groups: young model, young electroacupuncture, young sham electroacupuncture, and young control group. Electroacupuncture was applied to "Bai hui" (GV20) and "Qu chi" (LI11) for 8 weeks. CatWalk gait analysis was then performed at 3 days pre- and post-TBI, and at 1, 2, 4, and 8 weeks after intervention to observe motor function recovery. Positron emission computed tomography (PET/CT) was performed at 3 days pre- and post-TBI, and at 2, 4, and 8 weeks after intervention to detect cerebral metabolism. Results: Gait analysis showed that electroacupuncture improved the forepaw mean intensity in aged rats after 8 weeks of intervention, but after 4 weeks of intervention in young rats. PET/CT revealed increased metabolism in the left (the injured ipsilateral hemisphere) sensorimotor brain areas of aged rats during the electroacupuncture intervention, and increased metabolism in the right (contralateral to injury hemisphere) sensorimotor brain areas of young rats. Results: This study demonstrated that aged rats required a longer electroacupuncture intervention duration to improve motor function than that of young rats. The influence of aging on the cerebral metabolism of electroacupuncture treatment was mainly focused on a particular hemisphere.

2.
Food Chem ; 404(Pt A): 134609, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272300

RESUMO

Due to a small amount of Cu (Ⅱ) ions being beneficial and too much being harmful, it is necessary to establish a rapid and direct detection method. Herein, we reported a platform based on multiwalled carbon nanotubes (MWCNTs), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), and Nafion solution-modified glassy carbon electrode (GCE) for the direct electrochemical detection of Cu (II) ions. We used differential pulse anodic stripping voltammetry, including the electrodeposition of Cu (Ⅱ) ions on the modified GCE and subsequent anodic stripping. Under the optimum conditions, the linear range was 20 µg·L-1 âˆ¼ 950 µg·L-1, the limit of detection (LOD) was 16 µg·L-1, and the limit of quantification (LOQ) was 54 µg·L-1 for Cu (II). We realized the quantitative detection of Cu (Ⅱ) ions in juice and tea beverage without tedious pretreatment. The result showed that the sensor had good anti-interference and practicability for actual food samples.


Assuntos
Nanotubos de Carbono , Eletrodos , Íons , Bebidas , Chá , Técnicas Eletroquímicas/métodos
3.
Neural Regen Res ; 17(4): 806-811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472479

RESUMO

Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, most studies are volume-based which may lead to inaccurate anatomical positioning of functional data. The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study. In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China, 20 patients with osteonecrosis of the femoral head (12 males and 8 females, aged 56.80 ± 13.60 years) and 20 healthy controls (9 males and 11 females, aged 54.56 ± 10.23 years) were included in this study. Data of resting-state functional magnetic resonance imaging were collected. The results revealed that compared with healthy controls, compared with the healthy controls, patients with osteonecrosis of the femoral head (ONFH) showed significantly increased surface-based regional homogeneity (ReHo) in areas distributed mainly in the left dorsolateral prefrontal cortex, frontal eye field, right frontal eye field, and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. Regions showing significant differences in surface-based ReHo values between the healthy controls and patients with ONFH were defined as the regions of interests. Seed-based functional connectivity was performed to investigate interregional functional synchronization. When the areas with decreased surface-based ReHo in the frontal eye field and right premotor cortex were used as the regions of interest, compared with the healthy controls, the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex. Compared with healthy controls, patients with ONFH showed significantly decreased cortical thickness in the para-insular area, posterior insular area, anterior superior temporal area, frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens. These findings suggest that hip disorder patients showed cortical plasticity changes, mainly in sensorimotor- and pain-related regions. This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (approval No. 2018-041) on August 1, 2018.

4.
Front Neural Circuits ; 14: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625066

RESUMO

Objective: The present study aimed to investigate the analgesic effect of electroacupuncture (EA) in neuropathic pain due to brachial plexus avulsion injury (BPAI) and related changes in the metabolic brain connectivity. Methods: Neuropathic pain model due to BPAI was established in adult female Sprague-Dawley rats. EA stimulations (2/15 Hz, 30 min/day, 5-day intervention followed by 2-day rest in each session) were applied to the fifth-seventh cervical "Jiaji" acupoints on the noninjured side from 1st to 12th weeks following BPAI (EA group, n = 8). Three control groups included sham EA (nonelectrical acupuncture applied to 3 mm lateral to the real "Jiaji" acupoints), BPAI-only, and normal rats (no particular intervention; eight rats in each group). Thermal withdrawal latency (TWL) of the noninjured forepaw was regularly tested to evaluate the threshold of thermalgesia. Small animal [fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT scans of brain were conducted at the end of 4th, 12th, and 16th weeks to explore metabolic alterations of brain. Results: In the EA group, the TWL of the noninjured forepaw significantly decreased following BPAI and then increased following EA stimulation, compared with sham EA (P < 0.001). The metabolic brain connectivity among somatosensory cortex (SC), motor cortex (MC), caudate putamen (Cpu), and dorsolateral thalamus (DLT) in bilateral hemispheres decreased throughout the 16 weeks' observation in the BPAI-only group, compared with the normal rats (P < 0.05). In the EA group, the strength of connectivity among the above regions were found to be increased at the end of 4th week following BPAI modeling, decreased at 12th week, and then increased again at 16th week (P < 0.05). The changes in metabolic connectivity were uncharacteristic and dispersed in the sham EA group. Conclusion: The study revealed long-term and extensive changes of metabolic brain connectivity in EA-treated BPAI-induced neuropathic pain rats. Bilateral sensorimotor and pain-related brain regions were mainly involved in this process. It indicated that modulation of brain metabolic connectivity might be an important mechanism of analgesic effect in EA stimulation for the treatment of neuropathic pain.


Assuntos
Plexo Braquial/lesões , Encéfalo/metabolismo , Eletroacupuntura/métodos , Rede Nervosa/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Animais , Encéfalo/diagnóstico por imagem , Feminino , Rede Nervosa/diagnóstico por imagem , Neuralgia/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
5.
J Pain Res ; 13: 585-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273747

RESUMO

PURPOSE: Brain organisation is involved in the mechanism of neuropathic pain. Acupuncture is a common clinical practise in traditional Chinese medicine for the treatment of chronic pain. This study explored electroacupuncture's effects on brain metabolism following brachial plexus avulsion injury (BPAI)-induced pain. METHODS: A total of 32 female rats were randomised into a normal group, model group, sham electroacupuncture group, and electroacupuncture group. A pain model was included via right BPAI. The electroacupuncture intervention at cervical "Jiaji" points (C5-7) was performed for 11 weeks. The mechanical withdrawal threshold of the non-injured (left) forepaw was measured at the baseline and on days 3, 7, 14, 21, 28, 56, 84, and 112 subsequent to BPAI. Positron emission tomography (PET) was applied to explore metabolic changes on days 28, 84, and 112. RESULTS: After electroacupuncture, the mechanical withdrawal threshold of the left forepaws was significantly elevated and the effect persisted until 4 weeks after the intervention ceased (p<0.05 or p<0.001). In the sensorimotor-related brain regions, standardised uptake values in the bilateral somatosensory and motor cortices were observed in the electroacupuncture group. Metabolism particularly increased in the right somatosensory cortex. Metabolism changes also occurred in the pain-related brain regions and emotion- and cognition-related brain regions. CONCLUSION: The present study demonstrated the beneficial effects of electroacupuncture for relieving BPAI-induced neuropathic pain in rats. Electroacupuncture intervention might inhibit maladaptive plasticity in brain areas governing multidimensional functions, especially in sensorimotor- and cognition-related cortices.

6.
J Clin Neurosci ; 69: 250-256, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31477463

RESUMO

Electroacupuncture (EA) is an adjuvant therapy for peripheral nerve injury (PNI). Both peripheral and central alterations contribute to the rehabilitation process. We employed diffusion tensor imaging (DTI) to investigate the diffusion plasticity of afferent and efferent pathways caused by EA in model of peripheral nerve injury and reparation. Twenty-four rats were divided into three groups: normal group, model group and intervention group. Rats of the model group and the intervention group underwent sciatic nerve transection and anastomosis. EA intervention was performed on the intervention group at ST-36 and GB-30 for three months. Gait assessment and DTI were conducted at days post-operative (DPO) 30, 60 and 90. We selected corticospinal tract, spinothalamic tract and internal capsule as regions of interest and analyzed diffusion metrics including fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). FA values and RD values displayed significant differences or obvious tendency while AD values maintained a stable level. RD values displayed better indicative performance than FA in internal capsule. The intervention group presented significant correlation between RD values and Regularity Index (RI) during the intervention period. The effect of EA on peripheral nerve injury repairing rats appeared to be accelerated recovery process of sensory and motor neural pathway. We proposed that RD was a potential in vivo indicator for structural plasticity caused by EA and PNI.


Assuntos
Eletroacupuntura , Cápsula Interna/fisiopatologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA