Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 91: 153674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333327

RESUMO

BACKGROUND: Physciosporin (PHY) is one of the potent anticancer lichen compound. Recently, PHY was shown to suppress colorectal cancer cell proliferation, motility, and tumorigenesis through novel mechanisms of action. PURPOSE: We investigated the effects of PHY on energy metabolism and tumorigenicity of the human breast cancer (BC) cells MCF-7 (estrogen and progesterone positive BC) and MDA-MB-231 (triple negative BC). METHODS: The anticancer effect of PHY on cell viability, motility, cancer metabolism and tumorigenicity was evaluated by MTT assay, migration assay, clonogenic assay, anchorage-independent colony formation assay, glycolytic and mitochondrial metabolism analysis, qRT-PCR, flow cytometric analysis, Western blotting, immunohistochemistry in vitro; and by tumorigenicity study with orthotopic breast cancer xenograft model in vivo. RESULTS: PHY markedly inhibited BC cell viability. Cell-cycle profiling and Annexin V-FITC/PI double staining showed that a toxic dosage of PHY triggered apoptosis in BC cell lines by regulating the B-cell lymphoma-2 (Bcl-2) family proteins and the activity of caspase pathway. At non-toxic concentrations, PHY potently decreased migration, proliferation, and tumorigenesis of BC cells in vitro. Metabolic studies revealed that PHY treatment significantly reduced the bioenergetic profile by decreasing respiration, ATP production, and glycolysis capacity. In addition, PHY significantly altered the levels of mitochondrial (PGC-1α) and glycolysis (GLUT1, HK2 and PKM2) markers, and downregulated transcriptional regulators involved in cancer cell metabolism, including ß-catenin, c-Myc, HIF-1α, and NF-κB. An orthotopic implantation mouse model of BC confirmed that PHY treatment suppressed BC growth in vivo and target genes were consistently suppressed in tumor specimens. CONCLUSION: The findings from our in vitro as well as in vivo studies exhibit that PHY suppresses energy metabolism as well as tumorigenesis in BC. Especially, PHY represents a promising therapeutic effect against hormone-insensitive BC (triple negative) by targeting energy metabolism.


Assuntos
Neoplasias da Mama , Oxepinas/farmacologia , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Glicólise , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672606

RESUMO

Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson's disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened from a lichen library provided by the Korean Lichen Research Institute at Sunchon National University. EA is a secondary metabolite generated by lichens, including Ramalina, Evernia, and Hypogymnia, and several studies have described its anticancer, antifungal, and antimicrobial effects. However, the neuroprotective effects of EA have not been studied. We found that EA protected primary cultured neurons against 1-methyl-4-phenylpyridium (MPP+)-induced cell death, mitochondrial dysfunction, and oxidative stress, and effectively reduced MPP+-induced astroglial activation by inhibiting the NF-κB pathway. In vivo, EA ameliorated MPTP-induced motor dysfunction, dopaminergic neuronal loss, and neuroinflammation in the nigrostriatal pathway in C57BL/6 mice. Taken together, our findings demonstrate that EA has neuroprotective and anti-inflammatory effects in PD models and suggest that EA is a potential therapeutic candidate for PD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Hidroxibenzoatos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Avaliação Pré-Clínica de Medicamentos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Líquens/química , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992840

RESUMO

Lichens, composite organisms resulting from the symbiotic association between the fungi and algae, produce a variety of secondary metabolites that exhibit pharmacological activities. This study aimed to investigate the anti-inflammatory activities of the secondary metabolite atraric acid produced by Heterodermia hypoleuca. The results confirmed that atraric acid could regulate induced pro-inflammatory cytokine, nitric oxide, prostaglandin E2, induced nitric oxide synthase and cyclooxygenase-2 enzyme expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Meanwhile, atraric acid downregulated the expression of phosphorylated IκB, extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NFκB) signaling pathway to exhibit anti-inflammatory effects in LPS-stimulated RAW264.7 cells. Based on these results, the anti-inflammatory effect of atraric acid during LPS-induced endotoxin shock in a mouse model was confirmed. In the atraric acid treated-group, cytokine production was decreased in the peritoneum and serum, and each organ damaged by LPS-stimulation was recovered. These results indicate that atraric acid has an anti-inflammatory effect, which may be the underlying molecular mechanism involved in the inactivation of the ERK/NFκB signaling pathway, demonstrating its potential therapeutic value for treating inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/química , Hidroxibenzoatos/farmacologia , Extratos Vegetais/farmacologia , Choque Séptico/tratamento farmacológico , Animais , Citocinas/metabolismo , Feminino , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Choque Séptico/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos
5.
Phytomedicine ; 56: 10-20, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668330

RESUMO

BACKGROUND: Lichens, which represent symbiotic associations of fungi and algae, are potential sources of numerous natural products. Physciosporin (PHY) is a potent secondary metabolite found in lichens and was recently reported to inhibit the motility of lung cancer cells via novel mechanisms. PURPOSE: The present study investigated the anticancer potential of PHY on colorectal cancer (CRC) cells. METHODS: PHY was isolated from lichen extract by preparative TLC. The effect of PHY on cell viability, motility and tumourigenicity was elucidated by MTT assay, hoechst staining, flow cytometric analysis, transwell invasion and migration assay, soft agar colony formation assay, Western blotting, qRT-PCR and PCR array in vitro as well as tumorigenicity study in vivo. RESULTS: PHY decreased the viability of various CRC cell lines (Caco2, CT26, DLD1, HCT116 and SW620). Moreover, PHY elicited cytotoxic effects by inducing apoptosis at toxic concentrations. At non-toxic concentrations, PHY dose-dependently suppressed the invasion, migration and colony formation of CRC cells. PHY inhibited the motility of CRC cells by suppressing epithelial-mesenchymal transition and downregulating actin-based motility markers. In addition, PHY downregulated ß-catenin and its downstream target genes cyclin-D1 and c-Myc. Moreover, PHY modulated KAI1 C-terminal-interacting tetraspanin and KAI1 expression, and downregulated the downstream transcription factors c-jun and c-fos. Finally, PHY administration showed considerable bioavailability and effectively decreased the growth of CRC xenografts in mice without causing toxicity. CONCLUSION: PHY suppresses the growth and motility of CRC cells via novel mechanisms.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Oxepinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Líquens/química , Masculino , Camundongos Endogâmicos BALB C , Oxepinas/administração & dosagem , Oxepinas/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
6.
Molecules ; 23(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441806

RESUMO

Lichens produce various unique chemicals that are used in the pharmaceutical industry. To screen for novel lichen secondary metabolites that inhibit the stemness potential of colorectal cancer cells, we tested acetone extracts of 11 lichen samples collected in Chile. Tumidulin, isolated from Niebla sp., reduced spheroid formation in CSC221, DLD1, and HT29 cells. In addition, mRNA expressions and protein levels of cancer stem markers aldehyde dehydrogenase-1 (ALDH1), cluster of differentiation 133 (CD133), CD44, Lgr5, and Musashi-1 were reduced after tumidulin treatment. Tumidulin decreased the transcriptional activity of the glioma-associated oncogene homolog zinc finger protein (Gli) promoter in reporter assays, and western blotting confirmed decreased Gli1, Gli2, and Smoothened (SMO) protein levels. Moreover, the tumidulin activity was not observed in the presence of Gli and SMO inhibitors. Together, these results demonstrate for the first time that tumidulin is a potent inhibitor of colorectal cancer cell stemness.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Líquens/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
7.
Phytomedicine ; 40: 106-115, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496163

RESUMO

BACKGROUND: Endolichenic fungi are microbes that inhabit the thalli of lichens and produce various unique chemicals that can be used for pharmaceutical purposes. PURPOSE: This study screened a library of endolichenic fungal extracts to identify novel anticancer agents capable of suppressing the tumorigenicity of human cancer cells. METHODS: Active compounds were isolated from extracts of endolichenic fungi by column chromatography and reverse-phase HPLC. The anticancer effects of the extracts on cell viability was assessed with the use of MTT assay, Western blotting, fluorescence labeling of apoptotic cell, and flow cytometric analysis; and cell motility with the use of migration, invasion and soft agar colony-formation assay in vitro; and on skin and intraperitoneal mouse xenograft tumors in vivo were investigated. The therapeutic effects of the extract alone or in combination with the conventional chemoreagent docetaxel were analyzed by sulforhodamine B assay. RESULTS: Acetone extracts of EL002332, isolated from Endocarpon pusillum collected in the China desert in 2010, showed selective cytotoxicity against AGS human gastric cancer cells and CT26 mouse colon cancer cells. An active pure compound named myC was isolated from mycelium acetone extracts in a liquid culture system and showed more potent cytotoxicity than crude extracts in the AGS cell line. Especially, myC greatly increased the apoptotic cell population at the IC50 concentration and activated apoptotic signaling by regulating Bcl2 family protein expression and caspase pathway activity. EL002332 crude extracts and myC decreased AGS cell motility at sub-lethal concentrations. In vivo skin and intraperitoneal xenograft tumor experiments showed that the size of tumors and the tumor score were significantly smaller in EL002332 crude extract-treated groups than in control groups. EL002332 crude extracts showed synergistic effects with docetaxel on the AGS and TMK1 cell lines. CONCLUSION: The endolichenic fungus EL002332 has potential anticancer activity in gastric cancer and peritoneal carcinomatosis.


Assuntos
Antineoplásicos/farmacologia , Líquens/microbiologia , Neoplasias Gástricas/tratamento farmacológico , Acetona/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ascomicetos/química , Ascomicetos/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Humanos , Masculino , Camundongos Endogâmicos BALB C , Micélio/química , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Extratos Vegetais/farmacologia , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 10(9): e0137889, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371759

RESUMO

Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Líquens/metabolismo , Neoplasias Pulmonares/patologia , Oxepinas/metabolismo , Oxepinas/farmacologia , Acetona/química , Antineoplásicos/isolamento & purificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Kangai-1/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Oxepinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fator de Transcrição AP-1/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
9.
Wei Sheng Wu Xue Bao ; 54(7): 770-7, 2014 Jul 04.
Artigo em Chinês | MEDLINE | ID: mdl-25252458

RESUMO

OBJECTIVE: To isolate polyketide synthase (PKS) gene from medicinal Usnea longissima lichen forming fungi, and identify the function of obtained PKS. METHODS: We used Usnea. longissima lichen forming fungi to isolate PKS gene by nested PCR using degenerate primers and screening a Fosimid genomic library. MEGA 4.0.2 program was used for phylogenetic analysis and RT-PCR was used to detect gene expression. RESULTS: We obtained a gene cluster including non-reducing PKS (UlPKS5), putative beta-lactamase and putative dehydratase from Usnea longissima lichen forming fungi. UlPKS5 contained ketosynthase (KS), acyl transferase (AT), product template (PT) and acyl carrier protein (ACP) domain. Phylogenetic analysis shows that UlPKS5 belonged to non-reducing PKS group V, which involved anthraquinone biosynthesis. RT-PCR analyses reveal that the expression of UlPKS5 was up-regulated by sucrose (2% and 10%) and sorbitol (10%). CONCLUSION: PKS(UlPKS5), putative beta-lactamase and putative dehydratase were related with anthraquinone biosynthesis in U. longissima.


Assuntos
Proteínas Fúngicas/genética , Família Multigênica , Policetídeo Sintases/genética , Usnea/enzimologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Usnea/química , Usnea/genética
10.
Mycobiology ; 42(1): 34-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24808732

RESUMO

Usnea longissima has a long history of use as a traditional medicine. Several bioactive compounds, primarily belonging to the polyketide family, have been isolated from U. longissima. However, the genes for the biosynthesis of these compounds are yet to be identified. In the present study, three different types of non-reducing polyketide synthases (UlPKS2, UlPKS4, and UlPKS6) were identified from a cultured lichen-forming fungus of U. longissima. Phylogenetic analysis of product template domains showed that UlPKS2 and UlPKS4 belong to group IV, which includes the non-reducing polyketide synthases with an methyltransferase (MeT) domain that are involved in methylorcinol-based compound synthesis; UlPKS6 was found to belong to group I, which includes the non-reducing polyketide synthases that synthesize single aromatic ring polyketides, such as orsellinic acid. Reverse transcriptase-PCR analysis demonstrated that UlPKS2 and UlPKS4 were upregulated by sucrose; UlPKS6 was downregulated by asparagine, glycine, and alanine.

11.
J Microbiol ; 49(3): 473-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21717335

RESUMO

The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with ß-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.


Assuntos
Líquens/microbiologia , Policetídeo Sintases/isolamento & purificação , Policetídeo Sintases/metabolismo , Usnea/enzimologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Usnea/classificação
12.
Food Chem Toxicol ; 47(9): 2157-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19501127

RESUMO

This study was performed to elucidate the anti-proliferative effects and the apoptotic mechanisms of extracts from Lethariella zahlbruckneri in HT-29 human colon cancer cells. Both the acetone extract (AEL) and methanolic extract (MEL) of L. zahlbruckneri decreased viable cell numbers in a dose- and time-dependent manner in HT-29 cells. The AEL showed stronger cytotoxicity than MEL. Cell death induced by AEL increased cell populations in the sub-G1 phase, as well as the formation of apoptotic bodies and nuclear condensation, whereas MEL did not. Therefore, the potential of AEL to induce apoptosis was examined. Apoptosis induced by AEL was associated with the activation of initiator caspases-8 and -9, as well as the effector caspase-3. AEL stimulated Bid cleavage. This indicated that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. AEL increased the expression of the pro-apoptotic protein, Bax, and decreased the expression of the anti-apoptotic protein, Bcl-2. AEL also increased the expression of the caspase-independent mitochondrial apoptosis factor, AIF, in HT-29 cells. These results indicate that AEL inhibited HT-29 cell proliferation by inducing apoptosis, which might be mediated via both caspase-dependent and -independent pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Líquens/química , Extratos Vegetais/farmacologia , Acetona/química , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/metabolismo , Western Blotting , Caspase 8/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , DNA de Neoplasias/biossíntese , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Metanol/química , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA