Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(3): 405-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578104

RESUMO

An experiment was carried out to explore the impact of petroleum hydrocarbons (PHs)-degrading microbial consortium (MC) on phytoremediation ability and growth of water hyacinth (WH) plants in water contaminated with lead (Pb) and PHs. Buckets (12-L capacity) were filled with water and WH plants, PHs (2,400 mg L-1) and Pb (10 mg L-1) in respective buckets. Plants were harvested after 30 days of transplanting and results showed that PHs and Pb substantially reduced the agronomic (up to 62%) and physiological (up to 49%) attributes of WH plants. However, the application of MC resulted in a substantial increase in growth (38%) and physiology (22%) of WH plants over uninoculated contaminated control. The WH + MC were able to accumulate 93% Pb and degrade/accumulate 72% of PHs as compared to initial concentration. Furthermore, combined use of WH plants and MC in co-contamination of PHs and Pb, reduced Pb and PHs contents in water by 74% and 68%, respectively, than that of initially applied concentration. Our findings suggest that the WH in combination with PHs-degrading MC could be a suitable nature-based water remediation technology for organic and inorganic contaminants and in future it can be used for decontamination of mix pollutants from water bodies.


Phytoremediation by aquatic macrophytes is a promising technique for the cleanup of environmental toxins from wastewater. To our knowledge, this is the first study reporting the integrated use of water hyacinth (WH) plants and a newly developed multi-trait microbial consortium for the simultaneous remediation of organic (i.e., petroleum hydrocarbons) and inorganic (i.e., lead) pollutants from the contaminated water. Findings of this study provide the basic but important information on the combined use of WH and microbes for remediation of mix pollution from water bodies.


Assuntos
Eichhornia , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Chumbo , Hidrocarbonetos , Plantas , Poluentes do Solo/análise , Solo
2.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279904

RESUMO

Nutraceuticals are defined as food or food components with therapeutic capabilities that have few side effects and are regarded as a natural therapy for preventing the onset of several life-threatening illnesses. The use of microbial cell factories to produce nutraceuticals is considered to be sustainable and promising for meeting market demand. Among the diverse strategies for optimizing microbial cell factories, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system has emerged as a valuable tool for gene integration, deletion, activation, and downregulation. With the advent of multiplexed and precise CRISPR strategies, optimized microbial cell factories are revolutionizing the yield of nutraceuticals. This review focuses on the development of highly adaptable CRISPR strategies to optimize the production in microbial cell factories of some important nutraceuticals (belonging to the class of carotenoids, flavonoids, stilbenoids, polysaccharides, and nonprotein amino acids). Further, we highlighted current challenges related to the efficiency of CRISPR strategies and addressed potential future directions to fully harness CRISPR strategies to make nutraceutical synthesis in microbial cell factories an industrially favorable method.


Assuntos
Bioengenharia , Engenharia Metabólica , Biologia Sintética , Suplementos Nutricionais
3.
AIMS Microbiol ; 8(1): 108-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496992

RESUMO

Vitamin C stands as an essential water-soluble vitamin, antioxidant and has been shown to enhance immunity. SARS-CoV-2 has been spreading rapidly across the worldwide, several cellular processes of innate and adaptive immunity are aided by vitamin C, which strengthens the immune system overall. Multiple lines of evidence in the literature associate vitamin C with antioxidant, anti-inflammatory, anticoagulant and immunomodulatory actions. Pneumonia and sepsis patients had poor ascorbic acid status and high oxidative stress, according to many studies. Pneumonia patients who get vitamin C may have less severe symptoms and a longer course of the illness if they do. To standardize plasma levels in sepsis patients, gram measurements of the vitamin must be administered intravenously (IV). This intervention has been shown in a few trials to reduce mortality. COVID-19 management in China and the United States has exhibited remarkable results when using a high percentage of intravenous vitamins C. It's acceptable to include vitamin C in the COVID-19 treatment protocol as a secondary measure based on the current active clinical studies looking at the impact of vitamin C on the management of COVID-19. Patients with hypovitaminosis C or severe respiratory illnesses, such as COVID-19, may benefit from taking vitamin C, due to its good safety profile, simplicity of use, and potential for rapid production scaling. The study's goal was to see whether high dosage intravenous vitamin C had any impact on individuals with severe COVID-19 (HDIVC). Finally we discuss recent research that has been published on the efficacy of vitamin C administration in the treatment of viral infection and life-threatening conditions. The purpose of this manuscript is to summarise existing research on the efficacy of vitamin C as a treatment for COVID-19 and to discuss possible explanations for why it may work in some individuals but not in others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA