Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 343: 139891, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604337

RESUMO

Cynodon dactylon, an invasive species, exhibits its robust adaptability, reproduction and nutrient regime against the local species. Taking advantage of this harmful grass as a raw precursor to produce valuable materials for wastewater treatment has paid much attention. Herein, we report on the fabrication of Cynodom dactylon derived MgFe2O4@AC with a main goal of effective removal of ciprofloxacin antibiotic from water. Our findings showed that MgFe2O4@ACK1 composites attained mesoporous textures, high specific surface areas (884.3-991.6 m2 g-1), and MgFe2O4-20%@ACK1 was the most effective with a very high removal efficiency of 96.7%. The Elovich model was suitable for describing the kinetic of adsorption with (Radj)2 of 0.9988. Meanwhile, the isotherm data obeyed the Langmuir model corresponding to (Radj)2 of 0.9993. Qmax value of MgFe2O4-20%@ACK1 was determined at 211.67 mg g-1. The proposed adsorption mechanism primarily comprises five routes as follows, (i) pore-filling, (ii) π-π interaction, (iii) electrostatic interaction, (iv) hydrogen bonding, and (v) hydrophobic interaction. MgFe2O4-20%@ACK1 adsorbent could reuse with three cycles. We recommend that MgFe2O4/ACs derived from Cynodom dactylon could be high-efficiency adsorbents for the elimination of antibiotics.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Cynodon , Poaceae , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Antibacterianos , Adsorção , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA