Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Planta Med ; 90(5): 388-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490239

RESUMO

Diabetes mellitus, linked with insulin resistance and hyperglycaemia, is a leading cause of mortality. Glucose uptake through glucose transporter type 4, especially in skeletal muscle, is crucial for maintaining euglycaemia and is a key pathway targeted by antidiabetic medication. Abrus precatorius is a medicinal plant with demonstrated antihyperglycaemic activity in animal models, but its mechanisms are unclear.This study evaluated the effect of a 50% ethanolic (v/v) A. precatorius leaf extract on (1) insulin-stimulated glucose uptake and (2) related gene expression in differentiated C2C12 myotubes using rosiglitazone as a positive control, and (3) generated a comprehensive phytochemical profile of A. precatorius leaf extract using liquid chromatography-high resolution mass spectrometry to elucidate its antidiabetic compounds. A. precatorius leaf extract significantly increased insulin-stimulated glucose uptake, and insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression; however, it had no effect on glucose transporter type 4 gene expression. At 250 µg/mL A. precatorius leaf extract, the increase in glucose uptake was significantly higher than 1 µM rosiglitazone. Fifty-five phytochemicals (primarily polyphenols, triterpenoids, saponins, and alkaloids) were putatively identified, including 24 that have not previously been reported from A. precatorius leaves. Abrusin, precatorin I, glycyrrhizin, hemiphloin, isohemiphloin, hispidulin 4'-O-ß-D-glucopyranoside, homoplantaginin, and cirsimaritin were putatively identified as known major compounds previously reported from A. precatorius leaf extract. A. precatorius leaves contain antidiabetic phytochemicals and enhance insulin-stimulated glucose uptake in myotubes via the protein kinase B/phosphoinositide 3-kinase pathway by regulating insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression. Therefore, A. precatorius leaves may improve skeletal muscle insulin sensitivity and hyperglycaemia. Additionally, it is a valuable source of bioactive phytochemicals with potential therapeutic use for diabetes.


Assuntos
Abrus , Diabetes Mellitus , Hiperglicemia , Resistência à Insulina , Animais , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Abrus/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Rosiglitazona/metabolismo , Rosiglitazona/farmacologia , Transportador de Glucose Tipo 4 , Fosfatidilinositol 3-Quinases , Músculo Esquelético/metabolismo , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Glucose/farmacologia
2.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678596

RESUMO

Momordica cochinchinensis is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of M. cochinchinensis seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin. This cytotoxicity was cancer-specific with lower cytotoxic effects on HaCaT epidermal keratinocytes. Cytotoxicity correlated with MAPK signalling pathways leading to apoptosis and necrosis induced by triggering tumour necrosis factor receptor-1 (TNFR1), reducing the expression of nuclear factor kappa B (NF-kB), and suppression of BRAF/MEK. This efficacy of M. cochinchinensis seed extracts on melanoma cells provides a platform for future clinical trials as potent adjunctive therapy for metastatic melanoma.

3.
Plant Methods ; 17(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407662

RESUMO

BACKGROUND: Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. RESULTS: In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. CONCLUSION: The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD - (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.

4.
Phys Chem Chem Phys ; 22(43): 25335-25343, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33140777

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines have been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the SARS-CoV-2 virus that causes COVID-19 have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here, we explore the underlying molecular mechanisms of the computationally determined top candidate, namely, rutin which is a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target-Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro's pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed two more hydrophobic analogs, M1 and M2, which satisfy the rule of five for western medicines and demonstrated that they (M2 in particular) possess much stronger binding affinities to the SARS-COV-2s Mpro than rutin, due to the enhanced hydrophobic interaction as well as more hydrogen bonds. Therefore, our results provide invaluable insights into the mechanism of a ligand's binding inside the Mpro and shed light on future structure-based designs of high-potent inhibitors for SARS-CoV-2 Mpro.


Assuntos
Betacoronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Rutina/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Medicina Herbária , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Inibidores de Proteases/metabolismo , Domínios Proteicos , Rutina/metabolismo , SARS-CoV-2 , Termodinâmica , Proteínas não Estruturais Virais/química
5.
BMC Complement Med Ther ; 20(1): 365, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238969

RESUMO

BACKGROUND: Momordica cochinchinensis (Cucurbitaceae) is a nutritionally and medicinally important fruit restricted to South East Asia with diverse morphological and genetic variations but there is limited information on its medicinal potential. METHODS: M. cochinchinensis aril from 44 different samples in Australia, Thailand and Vietnam were extracted using different solvents and tested for its anticancer potential. Anticancer activity of M. cochinchinensis aril on breast cancer (MCF7 and BT474) and melanoma (MM418C1 and D24) cells were compared to control fibroblasts (NHDF). The cytotoxicity of the cells following treatment with the aril extract was determined using CCK-8 assay. Biochemical and morphological changes were analysed using flow cytometry, confocal and transmission electron microscopy to determine the mechanism of cell death. RESULTS: The water extract from the aril of M. cochinchinensis elicited significantly higher cytotoxicity towards breast cancer and melanoma cells than the HAE extract. The IC50 concentration for the crude water extract ranged from 0.49 to 0.73 mg/mL and induced both apoptotic and necrotic cell death in a dose- and time-dependant manner with typical biochemical and morphological characteristics. The greatest cytotoxicity was observed from Northern Vietnam samples which caused 70 and 50% melanoma and breast cancer cell death, respectively. CONCLUSIONS: The water extract of M. cochinchinensis aril caused significant apoptosis and necrosis of breast cancer and melanoma cells, with varieties from Northern Vietnam possessing superior activity. This highlights the potential of this fruit in the development of novel anticancer agents against such tumours, with specific regions on where to collect the best variety and extraction solvent for optimum activity.


Assuntos
Antineoplásicos/farmacologia , Momordica , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Sudeste Asiático , Austrália , Linhagem Celular Tumoral , Frutas , Humanos , Células MCF-7
6.
J Nat Prod ; 83(6): 1817-1828, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32437150

RESUMO

Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/química , Ciclotídeos/farmacologia , Viola/química , Sequência de Aminoácidos , Biodiversidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vietnã
7.
Proc Natl Acad Sci U S A ; 117(15): 8486-8493, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234785

RESUMO

Nucleic acid aptamers hold great promise for therapeutic applications due to their favorable intrinsic properties, as well as high-throughput experimental selection techniques. Despite the utility of the systematic evolution of ligands by the exponential enrichment (SELEX) method for aptamer determination, complementary in silico aptamer design is highly sought after to facilitate virtual screening and increased understanding of important nucleic acid-protein interactions. Here, with a combined experimental and theoretical approach, we have developed two optimal epithelial cellular adhesion molecule (EpCAM) aptamers. Our structure-based in silico method first predicts their binding modes and then optimizes them for EpCAM with molecular dynamics simulations, docking, and free energy calculations. Our isothermal titration calorimetry experiments further confirm that the EpCAM aptamers indeed exhibit enhanced affinity over a previously patented nanomolar aptamer, EP23. Moreover, our study suggests that EP23 and the de novo designed aptamers primarily bind to EpCAM dimers (and not monomers, as hypothesized in previous published works), suggesting a paradigm for developing EpCAM-targeted therapies.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Molécula de Adesão da Célula Epitelial/química , Molécula de Adesão da Célula Epitelial/metabolismo , Magnésio/metabolismo , Calorimetria , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Multimerização Proteica , Técnica de Seleção de Aptâmeros
8.
Nanoscale ; 12(4): 2810-2819, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31961358

RESUMO

Recently, phosphorene, a novel two-dimensional nanomaterial with a puckered surface morphology, was shown to exhibit cytotoxicity, but its underlying molecular mechanisms remain unknown. Herein, using large scale molecular dynamics simulations, we show that phosphorene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes due to the strong dispersion interaction between phosphorene and lipid molecules, which would reduce cell viability. The extracted phospholipid molecules are aligned along the wrinkle direction of the phosphorene nanosheet because of its unique puckered structure. Our results also reveal that small phosphorene nanosheets penetrate into the cell membrane in a specific direction which is determined by the size and surface topography of phosphorene and the thickness of the membrane. These findings might shed light on understanding phosphorene's cytotoxicity and would be helpful for the future potential biomedical applications of phosphorene, such as biosensors and antibacterial agents.


Assuntos
Membrana Celular/efeitos dos fármacos , Nanoestruturas/toxicidade , Fósforo/toxicidade , Técnicas Biossensoriais , Membrana Celular/química , Sobrevivência Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoestruturas/química , Fosfolipídeos/química , Fósforo/química , Propriedades de Superfície
9.
Plant Methods ; 15: 105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516543

RESUMO

Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.

10.
Medicines (Basel) ; 5(3)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231502

RESUMO

Background: Gac (Momordica cochinchinensis Spreng) seeds have long been used in traditional medicine as a remedy for numerous conditions due to a range of bioactive compounds. This study investigated the solvent extraction of compounds that could be responsible for antioxidant activity and anticancer potential. Methods: Defatted Gac seed kernel powder was extracted with different solvents: 100% water, 50% methanol:water, 70% ethanol:water, water saturated butanol, 100% methanol, and 100% ethanol. Trypsin inhibitors, saponins, phenolics, and antioxidant activity using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power (FRAP) assays; and anticancer potential against two melanoma cancer cell lines (MM418C1 and D24) were analysed to determine the best extraction solvents. Results: Water was best for extracting trypsin inhibitors (581.4 ± 18.5 mg trypsin/mg) and reducing the viability of MM418C1 and D24 melanoma cells (75.5 ± 1.3 and 66.9 ± 2.2%, respectively); the anticancer potential against the MM418C1 cells was highly correlated with trypsin inhibitors (r = 0.92, p < 0.05), but there was no correlation between anticancer potential and antioxidant activity. The water saturated butanol had the highest saponins (71.8 ± 4.31 mg aescin equivalents/g), phenolic compounds (20.4 ± 0.86 mg gallic acid equivalents/g), and antioxidant activity, but these measures were not related to anticancer potential. Conclusions: Water yielded a Gac seed extract, rich in trypsin inhibitors, which had high anticancer potential against two melanoma cell lines.

11.
BMC Complement Altern Med ; 16: 368, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646974

RESUMO

BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions. METHODS: The present study, for the first time, compared and demonstrated the cytotoxicity of the crude methanol extracts of C. nutans leaves from 11 different locations in Malaysia, Thailand and Vietnam, with diverse environmental conditions against D24 melanoma cells through WST-8 assay. The percentage of apoptotic cells following treatment with the most active extract was determined in a dose- and time-dependent manner by a cytofluorometric double staining technique. Biochemical and morphological changes in the treated and untreated cells were examined by fluorescence and transmission electron microscopy techniques, respectively, to further affirm the induction of apoptosis. RESULTS: The leaves of plants grown at higher elevations and lower air temperatures were more cytotoxic to the D24 melanoma cells than those grown at lower elevations and higher air temperatures, with the leaf extract from Chiang Dao, Chiang Mai, Thailand exhibited the highest cytotoxicity (24 h EC50: 0.95 mg/mL and 72 h EC50: 0.77 mg/mL). This most active crude extract induced apoptotic cell death in the D24 cells in a dose- and time-dependent manner. Typical biochemical and morphological characteristics of apoptosis were also observed in the treated D24 cells. CONCLUSIONS: The results, showing the cytotoxicity of C. nutans and the induction of apoptosis in D24 cells, are significant and useful to facilitate the development of C. nutans as a potential novel chemotherapeutic agent for the management of skin melanoma.


Assuntos
Acanthaceae/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Extratos Vegetais/toxicidade , Folhas de Planta/química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , Tailândia
12.
J Chem Phys ; 142(23): 234102, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093545

RESUMO

Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.


Assuntos
Nanopartículas Metálicas/química , Titânio/química , Cálcio/química , Humanos , Íons/química , Simulação de Dinâmica Molecular , Albumina Sérica/química , Água/química , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA