Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948464

RESUMO

Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-ß-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.


Assuntos
Metilação de DNA , Regulação para Baixo , Fibroblastos/citologia , Marcadores Genéticos , Proliferação de Células , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Marcadores Genéticos/efeitos dos fármacos , Humanos , MicroRNAs/genética , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Chá/química
2.
Int J Mol Sci ; 20(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781538

RESUMO

The human skin is the outermost physical barrier and has its own circadian machinery that works either cooperatively with the central clock, or autonomously. Circadian rhythms have been observed in many functions related to epidermal homeostasis including hydration and inflammation, and this functional oscillation is disturbed by ultraviolet radiation (UVR), which is a strong environmental cue. Among the genes estimated to show circadian expression in the skin, metalloproteinase inhibitor 3 (TIMP3), has a rhythmic expression in synchronized human keratinocytes similar to that of the core clock gene PER1 and an epidermal circadian regulatory gene, aquaporin 3 (AQP3) but was antiphase to the core clock gene BMAL1. Tumor necrosis factor-α (TNF-α), the regulatory target of TIMP3 via a disintegrin and metalloproteinase domain 17 (ADAM17), was inversely regulated when TIMP3 expression was downregulated by ultraviolet B (UVB) treatment. When synthetic TIMP3 peptides were applied to the cells, the secretion of TNF-α did not increase following the UVB treatment. Similar to TIMP3 peptides, Camellia sinensis leaf-derived extracts showed a distinguishing efficacy in recovering TIMP3 expression, downregulated by UVB treatment. Together, our results suggest that TIMP3 reversely mediates UVR-induced inflammation by being highly expressed during the daytime; therefore, recovering the circadian expression of TIMP3 using synthetic TIMP3 peptides or bioactive natural ingredients could at least in part inhibit the UVR-induced cellular phenomena.


Assuntos
Camellia sinensis/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Inibidor Tecidual de Metaloproteinase-3/genética , Proteína ADAM17/genética , Fatores de Transcrição ARNTL/genética , Aquaporina 3/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Humanos , Inflamação/genética , Inflamação/patologia , Proteínas Circadianas Period/genética , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Raios Ultravioleta
3.
Int J Mol Sci ; 19(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762498

RESUMO

Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5'-O-α-glucopyranoside (EGCG-5'Glu), was synthesized, and its characteristics were investigated. EGCG-5'Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5'Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5'Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5'Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5'Glu was examined. EGCG-5'Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5'Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5'Glu could be used as a cosmetics ingredient or dietary supplement.


Assuntos
Catequina/análogos & derivados , Sequestradores de Radicais Livres/farmacologia , Glucosídeos/farmacologia , Apoptose/efeitos dos fármacos , Catequina/química , Catequina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Glucosídeos/química , Células HEK293 , Humanos , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
J Ethnopharmacol ; 201: 82-90, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274893

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wild chrysanthemum (Chrysanthemum indicum) is one of well-known medicinal plants traditionally used in Korea and China. As a variant of wild chrysanthemum, white wild chrysanthemum (Chrysanthemum indicum var. albescens) is also ethnopharmacologically applied to treat various symptoms such as inflammatory diseases. AIM OF STUDY: Although the anti-inflammatory activity of Chrysanthemum indicum has been reported, the anti-inflammatory activity and underlying molecular mechanism of white wild chrysanthemum are poorly understood. MATERIALS AND METHODS: The effects of Chrysanthemum indicum var. albescens methanol extract (Civ-ME) on the production of inflammatory mediators, expression of pro-inflammatory genes, cell viability, and the activities of intracellular signaling molecules and transcription factors were investigated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. RESULTS: Civ-ME suppressed the production of both nitric oxide (NO) and prostaglandin E2 (PGE2) without cytotoxicity in LPS-stimulated RAW264.7 cells. Civ-ME was found to reduce the mRNA levels of inflammatory genes such as inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α and reduced NF-κB-mediated transcriptional activation. Civ-ME inhibited the nuclear translocation of NF-κB (p65 and p50), and its upstream signaling composed of IκBα and IKKα/ß. An NF-κB luciferase reporter gene assay and an in vitro kinase assay confirmed that AKT1 and AKT2 might be direct pharmacological targets of Civ-ME. In addition, luteolin was identified by HPLC analysis as the main active pharmacological components of Civ-ME. CONCLUSION: Civ-ME exerts an anti-inflammatory effect by targeting AKT1 and AKT2 in the NF-κB signaling pathway in macrophage-mediated inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Chrysanthemum , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos , Metanol/química , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fitoterapia , Extratos Vegetais/farmacologia , Células RAW 264.7 , Solventes/química , Fator de Necrose Tumoral alfa/genética
5.
J Agric Food Chem ; 64(48): 9203-9213, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27933996

RESUMO

Epigallocatechin gallate (EGCG) is the most abundant catechin found in the leaves of green tea, Camellia sinensis. In this study, novel epigallocatechin gallate-glucocides (EGCG-Gs) were synthesized by using dextransucrase from Leuconostoc mesenteroides B-1299CB4. Response surface methodology was adopted to optimize the conversion of EGCG to EGCG-Gs, resulting in a 91.43% conversion rate of EGCG. Each EGCG-G was purified using a C18 column. Of nine EGCG-Gs identified by nuclear magnetic resonance analysis, five EGCG-Gs (2 and 4-7) were novel compounds with yields of 2.2-22.6%. The water solubility of the five novel compounds ranged from 229.7 to 1878.5 mM. The 5'-OH group of EGCG-Gs expressed higher antioxidant activities than the 4'-OH group of EGCG-Gs. Furthermore, glucosylation at 7-OH group of EGCG-Gs was found to be responsible for maintaining tyrosinase inhibitory activity and increasing browning-resistant activities.


Assuntos
Antioxidantes/química , Catequina/análogos & derivados , Glucosídeos/biossíntese , Glucosiltransferases/metabolismo , Camellia sinensis/química , Catequina/biossíntese , Inibidores de Glicosídeo Hidrolases/química , Humanos , Leuconostoc mesenteroides/enzimologia , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA