Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Natural Product Sciences ; : 181-199, 2019.
Artigo em Inglês | WPRIM | ID: wpr-760573

RESUMO

Angelica decursiva Fr. et Sav. (Umbelliferae) has traditionally been used to treat different diseases due to its antitussive, analgesic, and antipyretic activities. It is also a remedy for thick phlegm, asthma, and upper respiratory infections. Recently, the leaf of A. decursiva has been consumed as salad without showing any toxicity. This plant is a rich in different types of coumarin derivatives, including dihydroxanthyletin, psoralen, dihydropsoralen, hydroxycoumarin, and dihydropyran. Its crude extracts and pure constituents possess anti-inflammatory, anti-diabetic, anti-Alzheimer disease, anti-hypertension, anti-cancer, antioxidant, anthelmintic, preventing cerebral stroke, and neuroprotective activities. This valuable herb needs to be further studied and developed not only to treat these human diseases, but also to improve human health. This review provides an overview of current knowledge of A. decursiva metabolites and their biological activities to prioritize future studies.


Assuntos
Humanos , Angelica , Apiaceae , Asma , Misturas Complexas , Cumarínicos , Etnobotânica , Ficusina , Farmacologia , Plantas , Infecções Respiratórias , Acidente Vascular Cerebral
2.
Natural Product Sciences ; : 171-180, 2018.
Artigo em Inglês | WPRIM | ID: wpr-741621

RESUMO

Artemisia capillaris has been widely used as an alternative therapy for treating obesity and atopic dermatitis. It has been used as a hepatoprotactant. It is also used for ameliorating inflammatory reactions. Although there are several investigations on other Artemisia species, there is no systematic study describing the role of A. capillaris MeOH extract, its solvent soluble fractions, or derived anti-inflammatory principal components in regulating inflammatory conditions. Therefore, the objective of this study was to elucidate anti-inflammatory mechanisms of A. capillaris. Results revealed that MeOH extract of A. capillaris could decrease LPS-stimulated NO secretion. Of tested fractions, CH₂Cl₂, EtOAc, and n-BuOH strongly inhibited NO release from RAW264.7 cells. Bioactive mediators derived from CH₂Cl₂ and n-BuOH fractions elicited potent anti-inflammatory actions and strikingly abrogated LPS-triggered NO accumulation in RAW264.7 cells. Of particular interest, capillin and isoscopoletin possessed the most potent NO suppressive effects. Western blot analysis validated the molecular mechanism of NO inhibition and showed that capillin and isoscopoletin significantly down-regulated iNOS and COX-2 protein expression. Taken together, our results provide the first evidence that MeOH extract, CH₂Cl₂, EtOAc, and n-BuOH fractions from A. capillaris and its derived lead candidates can potently suppress inflammatory responses in macrophages by hampering NO release and down-regulating iNOS and COX-2 signaling.


Assuntos
Artemisia , Western Blotting , Dermatite Atópica , Flavonoides , Inflamação , Macrófagos , Obesidade
3.
Natural Product Sciences ; : 183-191, 2017.
Artigo em Inglês | WPRIM | ID: wpr-83907

RESUMO

Luteolin 5-O-glucoside is the major flavonoid from Korean thistle, Cirsium maackii. We previously reported the anti-inflammatory activities of luteolin 5-O-glucoside in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In this study, we determined the anti-inflammatory mechanisms of luteolin 5-O-glucoside through the inhibition of nitric oxide (NO) production in vitro and in vivo. Results revealed that luteolin 5-O-glucoside dose-dependently inhibited NO production and expression of iNOS and COX-2 in LPS-induced RAW 264.7 cells. Luteolin 5-O-glucoside also significantly inhibited the translocation of NF-κB, the activation of MAPKs, and ROS generation in LPS-induced RAW 264.7 cells. In addition, protein expressions of Nrf-2 and HO-1 were also upregulated by luteolin 5-O-glucoside treatment. Moreover, luteolin 5-O-glucoside inhibited λ-carrageenan-induced mouse paw edema by 65.34% and 48.31% at doses of 50 and 100 mg/kg body weight, respectively. These findings indicate potential anti-inflammatory effect of luteolin 5-O-glucoside particularly by downregulating NF-κB and upregulating HO-1/Nrf-2 pathway.


Assuntos
Animais , Camundongos , Peso Corporal , Cirsium , Edema , Técnicas In Vitro , Luteolina , Silybum marianum , Leite , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA